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ABSTRACT

The perform ance of  automatic speech recognition 
systems is usually assessed in terms of  error rate. 
Human speech recognition produces few errors, but 
relative difficulty o f  processing can be assessed via 
response time techniques. W e report the construction 
of a measure analogous to response time in a machine 
recognition system. This measure may be com pared 
directly with hum an response times. W e conducted a 
trial comparison o f  this type at the phonem e level, 
including both tense and lax vowels and a variety of 
consonant classes. The results suggested similarities 
between hum an and machine processing in the case of 
consonants, but differences in the case o f  vowels.

1. INTRODUCTION

How can the success o f  a speech recogniser be 
evaluated? "Hie obvious way is simply to score a 
recogniser’s output in terms of the num ber of units - 
sentences, words, phonem es - which correspond to what 
was "really" there in the input. This amounts to 
comparing the recogn iser’s performance with that o f  an 
ideal human listener, who is expected to perform at 
ceiling and recognise everything correctly. In reality, 
however, hum an listeners do not always recognise 
everything correctly; and even when they do, they find 
some utterances more difficult to process than others.

An alternative approach to system evaluation, 
therefore, might be to compare relative difficulty 
experienced by the machine with relative difficulty 
experienced by the hum an  listener. Note that this does 
not address the question of how the machine and the 
human are processing speech, which is chiefly of 
interest where a machine has been specifically designed
10 mimic hum an processing; relative difficulty is still a 
measure o f  output success, independent of the internal 
structure o f  the recogniser. Relative difficulty ought in 
principle to depend entirely on recogniser-extemal 
factors such as confusability o f  an input unit with other 
units in the input repertoire, the intrinsic amount o f  
^formation in the relevant unit (e.g. its duration), etc. 
Hie re fore if a hum an-m achine comparison o f  relative
1 * f t *  m

(ll>nculty were to reveal points at which the machine 
encountered difficulty but humans did not (or vice 
Verw)i it might point to ways in which recogniser 
design could be improved.

To assess relative difficulty for hum an listeners, it 
is o f  course necessary to m ove hum an performance off 
the ceiling. This can easily be done by degrading the 
input, but in the present case to do so would in effect 
vitiate the comparison with machine perform ance since 
machine and hum an would no longer be processing the 
same input. A standard psychological approach to the 
assessment of processing difficulty is, instead, to 
measure latency to produce a response o f  some kind
11 ]. Response time (RT) is widely used in the study of 
human speech recognition as a measure of relative 
processing difficulty at all levels [2] - including the 
sentence, word and phonem e levels, i.e. the units over 
which recogniser performance is usually assessed.

W e here present a first approach to a comparison 
of relative processing difficulty via response times of 
human and machine recognisers. The processing level 
which we chose to assess is the phoneme. Hum an RT 
to detect phonem es is measured by asking listeners to 
press a response key as soon as they can after being 
presented with an occurrence of a pre-specified target 
phoneme; typically the input within which the target is 
to be detected will be words or sentences. The 
phonem e detection task has been extensively used as a 
tool for studying a range of  psycholinguistic variables, 
such as word recognition [3], prosodic processing [4|, 
or the units o f  prelexical processing [5]; however, it has 
also produced a considerable am ount of  data on 
detection o f  particular phonemes. It is not the case that 
for humans any phonem e in any context is equally easy 
to detect; instead, there is quite a range of  human 
performance, m aking an informative comparison with a 
machine analogue of RT a feasible undertaking. In the 
present study we constructed such a measure for a 
recognition system, and compared the results it 
produced for a range of phonem es to hum an RTs for 
the same phonemes.

The results are not, however, presented here as an 
evaluation o f  the recognition system we used. The 
purpose o f  the present study was merely to test the 
feasibility o f  com paring hum an  and machine response 
times; it was, for instance, not possible to conduct the 
com parison across a single standard input. The 
contribution o f  the present report consists in the 
description of  the technique we used and the methods 
by which we com pared  the results it produced to the 
results available from studies o f  hum an recognition.
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2. THE MACHINE "RTs"

The com parison was conducted using a recogniser 
with a standard structure: a preprocessor to parameterise 
frames o f  speech, an estimator o f  the probabilities o f  
the class labels for each parameterised frame, and a 
segm enter  and labeller to produce the symbolic 
sequence of phonemes. Typically a recogniser uses 
short-term pow er spectra (or close derivative) as 
parametric representation, vector quantisation or 
Gaussian mixtures as probability estimator, and hidden 
Markov models to produce the most probable phonem e 
sequence [6]. The approach used here is unusual in the 
use of recurrent connectionist models for the phonem e 
probability estimation [7]. This structure is 
computationally more powerful than the conventional 
one, and yields a slightly lower error rate [8|.

The preprocessor calculates estimates of  power, 
power spectral density, pitch and degree o f  voicing. 
Apart from sm oothing  associated with the pitch 
frequency, the preprocessor contains no history. The 
class labels are the 61 phonetic symbols o f  the TIM IT 
database. For each frame the a-posteriori probability of 
class occupancy is calculated using the recurrent 
network. The use of feedback within the net allows 
past context to be used, and the decision is delayed by 
four frames (64ms) to allow a limited future context. 
The a-posteriori probability estimator implicitly 
incorporates the a-priori class occurrence probabilities.

Phonemes are modeled as a single state per 
phoneme M arkov model. The m axim um  likelihood 
symbol sequence is com puted with the Viterbi 
algorithm [9]. Transition probabilities are obtained by 
counting from the hand labels and the emission 
probabilities are provided from the recurrent network.

The process o f  segmentation and labeling using the 
Markov model provides the most likely sequence of 
phonem es for a sentence. Normally this is achieved by 
making a forward pass over the sentence, and 
com puting  for each phonem e the probability of all 
possible previous phonem es. Identity and likelihood of  
the m ost probable previous phonem e are recorded, so 
that at the end o f  the sentence it is possible to back 
track and com pute  the most likely phonem e sequence. 
However, in practice there is a time after which any 
most likely phonem e is independent o f  future acoustic 
information. This point is found by tracing the back 
pointers until they all go through the same phonem e. 
rHie m in im um  time required for a phonem e to becom e 
such a point o f  convergence was the designated RT.

H ie  recogniser processed the T IM IT  database, and 
RTs were calculated as above for all occurrences o f  the
15 selected phonemes. Error rates were also calculated 
for each phonem e, as well as the correlation between 
RT and measured phonem e duration across tokens.

3. THE HUMAN DATA

A substantial body of  hum an RT data from a 
single subject population was available for 15 
phonem es - seven vowels and eight consonants. O f  the 
vowels, six were full vowels: three tense (/a/, /i/, /u /) 
and three lax ( / s / ,  / i / ,  and / a / ) .  The seventh vowel was

the reduced vowel /a / .  A m ong  the consonants, there 
were two stops (/p/, /t/), two fricatives (/s/, /v/), two 
nasals (/m/, /n f) and two semi-vowels (/w/, /j/) 
Inclusion of  a variety o f  phonem e classes ensured a 
wide range in the R T  distribution. Error (missed 
detection) data was also available.

The data cam e from six experiments, four of which 
have been reported elsewhere [10, 11, 12], while a 
further two are reported to this meeting [13]. In these 
experiments hum an listeners were presented with 
isolated words (or, in one study, non-words),  and were 
instructed to press a response button as soon as they 
detected an occurrence o f  a particular target phoneme. 
The stimulus materials were blocked such that subjects 
were listening for only one target at a time; each 
subject listened for at least four phonem e targets. A 
total o f  171 listeners, all from the Cam bridge University 
comm unity , took part in the experiments, at least 24 in 
each, /a /  was heard by 147 listeners, /i/ by 96, the four 
short vowels by 75, and the consonants and /u /  by 24.

The following m easures  were computed: average 
RT for each phonem e across listeners; m ean  error rate 
(missed responses), ditto; and the correlation between 
RT and m easured  phonem e duration for each token in 
the experiments (token num ber varied since some 
phonem es were used in more than one experiment).

4. THE COMPARISON

O ur first com parison , o f  hum an and machine error 
rates, showed (unsurprisingly) that error rates were 
significantly h igher for m achine than for human 
perform ance (/ [14] = 8.39, p < .001). However, there 
was a significant positive correlation between the two 
rates across the 15 phonem es (r [14] = .75 p < .001).

These correlations are encouraging since they 
suggest that the hum an  and the m achine results may be 
tapping similar d im ensions o f  difficulty. However, the 
correlations may be spuriously produced by differences 
between (but not within) independent subsets of the 
data. Therefore  we considered the vowel and consonant 
subsets separately. Separate correlations between the 
hum an and m achine error rates for vowels versus 
consonants are shown in Fig. 1; both are at least 
marginally significant (r [6] = .76, p < .05 for vowels, / 
[7) = .64, p < .09 for consonants). It seems that 
machine errors across the phonem e set are indeed more
or less in proportion to hum an errors.

Table 1 shows the phonem es in order ot 
percentage error by hum ans and by the machine. The 
human errors show  an interpretable pattern. Among the 
vowels, lax vowels produce more errors than tense 
(with the reduced vowel / a /  producing most errors of 
all). Exactly this result - few er errors for tense vowels 
than for lax - occurs in perceptual confusion studies 
with hum an  listeners [14]. In the consonants, the 
greatest proportion of  errors occurs on semivowels and 
the smallest on nasals, with stops and fricatives in 
between. Again this is similar to the pattern found in 
confusion data from hum an listeners [15]. The machine 
patterns are not as clearly grouped by vowel type or by 
consonant m anner  o f  articulation, but the order is not 
markedly different from that in the hum an results.



Table /• Phonem es in order o f  mean percentage of  Table 2. Phonem es in order of mean RT, from fastest 
errors, from lowest (left) to highest (right), separately (left) to s lowest (right), separately for vowels and 
for vowels and consonants  and for humans vs. machine. consonants and for hum an  vs. m achine RTs.

Vowels
H um an i u a e i a 0
M achine i a 8 A U I 0
Consonants
H um an m n t s v p w j
Machine s n p t w m v j

For RT, a direct com parison of  hum an versus 
machine RTs is meaningless. However, there was 
asain a significant positive correlation across the 
phonemes between hum an  and machine perform ance (r 
[I4 | = .53, p < .05). Differences between hum an and 
machine perform ance appear, though, w hen the RT 
results are broken down into subsets. As Fig. 2 shows, 
there is a significant correlation betw een hum an  and 
machine RTs to consonants  (t [7] = .95, p < .001), but 
no relation betw een hum an  and m achine RTs to vowels.

Table 2 spells out the difference. The order of 
consonant RTs by the machine, is, as the high positive 
correlation would suggest, very similar indeed to the 
order produced by the hum an listeners. The machine 
orders the vowels quite differently, how ever (note, for 
instance, that the m achine responds fast to /a / ,  which 
produces the slowest RTs by far from the humans).

We undertook one further analysis to exam ine the 
difference between hum an  and machine RTs. The 
studies of hum an RTs had consistently found that RT to 
vowels showed a significant negative correlation with 
measured phonem e duration: the longer the vowel, the 
faster the RT [10, 11, 12, 13]. No such systematic 
relationship appeared how ever  between RT and duration 
of consonants. Since m easured  duration was available 
for all the phonem e tokens used in the hum an
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I'itture I. Mean percentage of  errors made by hum an 
listeners vs. the m achine for each phonem e, separately 
•°r vowels and consonants.

Vowels
H um an u i a e a  i 0
M achine i 0 i a  e u a
Consonants
H um an v n t m p s w j
M achine v m n p t s  w j

experiments, and was also available in the T IM IT  
labels, we repeated this analysis for each phonem e for 
both hum an and m achine RTs. The relevant correlation 
coefficients appear in Table 3. For the hum an RTs, 
vowels and consonants produce clearly different results: 
all vowels show a negative correlation between RT and 
duration (and all but two of  these are statistically 
significant), while for the consonants, the pattern is 
unsystematic (and no correlation is significant). The 
machine RTs also pattern differently for vowels and for 
consonants. The consonant pattern resembles that 
found with the hum an  results in that all correlations are 
close to zero. The vowel pattern produces, on the other 
hand, a significant correlation for every vowel - but in 
contrast to the hum an  results, the correlation is positive: 
the longer the vowel, the slower the RT.

For both hum an  and machine results there was 
little evidence o f  a speed-accuracy tradeoff in the 
vowel-consonant difference: vowels produced longer 
RTs and more errors than consonants. H ow ever  the 
relation betw een m ean error rate and mean RT across 
the phonem e set was closer for the hum an results 
(where the two measures were significantly correlated 
both overall and in vowel and consonant subsets) than 
for the machine. For hum ans, added vowel information 
over time speeds RT and reduces errors; for the 
machine it slows RT and leaves accuracy unchanged.

Human RT

Figure 2. M ean hum an  vs. m achine RT for each 
phoneme, separately for vowels and consonants.
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Table 3. Correlation coefficients (r) between measured 
phonem e duration and m ean hum an vs. machine RTs.

Vowels
Human Machine

u -.33 .30
•

i -.22 .11
a -.26 .47
£ -.43 .64
A -.20 .61
I -.15 .42

0 -.32 .32
Consonants

m -.07 .03
n .07 .14
P -.22 -.07
t -.26 .09
V -.19 -.08
s .11 .13
w .15 .17

•

J -.31 .07

5. CONCLUSION

We reiterate that this has been merely a feasibility 
study for a comparison of  machine and human RTs. 
Tliis undertaking arose from a project involving both 
psychologists studying hum an speech recognition and 
engineers constructing a machine recogniser; the 
processing of phonem es was of interest to both groups, 
and we sought a measure which would directly compare 
relative difficulty of phonem e processing for hum an and 
machine presented with identical input. H ie  present 
study is not an objective test o f  our recogniser’s 
performance, because the input processed by the 
recogniser and by the hum an listeners was in fact not 
identical. Our recogniser was trained on the T IM IT  
database o f  American English, while our subject 
population was trained on (i.e. native in) British 
English; it was not appropriate to present the T IM IT  
sentences to our subjects, or British English input to the 
machine. In the first instance we wanted just to 
evaluate the feasibility o f  the technique, and it is the 
results of  this feasibility study which are presented here.

Even with these caveats, the comparison has 
produced results o f  interest. A dissociation appeared: 
although the error rates produced by hum ans and the 
machine were correlated across the phoneme set, and 
RTs were highly correlated for consonants, this pattern 
broke down with RTs to vowels. This suggests that in 
vowel processing the machine is operating according to 
different principles than those used by humans. The 
effects of duration on RT differ: humans find added 
duration helpful in vowel recognition, the machine does 
not. Other researchers have reported that training a 
recogniser on durationally distinct vowel allophones 
reduces errors [16]. In the present case we conclude 
that our method of comparing machine and hum an RTs 
has highlighted a difference in processing characteristics 
for a subset o f  phonemes, and that such a result in a 
real test of  machine performance could point to aspects 
in which recogniser performance could be improved.
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