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ABSTRACT
ABBOT is the hybrid connectionist-hidden Markov model large-
vocabulary speech recognition system developed at Cambridge Uni-
versity. In this system, a recurrent network maps each acoustic vector
to an estimate of the posterior probabilities of the phone classes. The
maximum likelihood word string is then extracted using Markov
models. As in traditional hidden Markov models, the Markov pro-
cess is used to model the lexical and language model constraints.
This paper describes the system which participated in the November
1994 ARPA evaluation of continuous speech recognition systems.
The emphasis of the paper is on the differences between the 1993
and 1994 versions of the ABBOT system. This includes the utiliza-
tion of a larger training corpus (SI284 versus SI84), the extension
of the lexicon from 5,000 words to 65,000 words, the application of
a trigram language model, and the development of a near-realtime
single-pass decoder well suited for the hybrid approach. Experimen-
tal results are reported for various test and development sets from
the November 1992, 1993 and 1994 ARPA benchmark tests.

1. INTRODUCTION
The hybrid connectionist-hidden Markov model approach uses an
underlying hidden Markov process to model the time-varying na-
ture of the speech signal and a connectionist system to estimate the
observation likelihoods within the hidden Markov model (HMM)
framework [1]. ABBOT is a large-vocabulary speech recognition sys-
tem based on the hybrid approach and utilizes a recurrent network for
acoustic modeling. The major advantage of this approach is that the
recurrent network acts a nonparametric model that is able to capture
temporal acoustic context. Subsequently, the ABBOT system is a able
to achieve very good performance using context-independent phone
models.

The ABBOT system has participated in the 1993 [2] and 1994 ARPA
continuous speech recognition (CSR) evaluations. This paper pro-
vides a basic description of the 1994 system and reports on the
improvements made to the system over the past year. The acoustic
modeling used for the 1994 evaluations is presented in the follow-
ing section. This section describes the talker-cluster-based approach
taken for extending the ABBOT training from the SI-84 to the SI-
284 database. Section 3 briefly presents the application of a phone
deletion penalty term to the decoding process. For the 1994 H1:P0
task, ABBOT was extended to handle a 65,532 word vocabulary with
a trigram language model and the details are given in section 4.
The ABBOT decoder – described in section 5 – takes advantage of
the properties of the connectionist acoustic model to dramatically
reduce the recognition search time. Section 6 reports on the per-
formance of the ABBOT system on various ARPA CSR development
and evaluation tasks.

2. ACOUSTIC MODEL
This section describes the acoustic modeling process used in the
ABBOT system. This includes a brief description of the front-end,
structure of the observation model (i.e., the recurrent network), and
the training process used for estimating the parameters of the con-
nectionist component.

2.1. Acoustic Feature Representation
Two sets of acoustic features are used by the ABBOT system; MEL+
– a 20 channel mel-scaled filter bank with three voicing features [3],
and PLP – 12th order cepstral coefficients derived using perceptual
linear prediction and log energy [4]. Both sets of features were
computed from 32 msec windows of the speech waveform every
16 msec. Note that the choice of frame rate was determined for
performance maximization not for decoding speed. To increase the
robustness of the system to environmental conditions, the statistics
of each feature channel were normalized to zero mean with unit
variance over each sentence. To reduce the storage requirement,
each feature channel at each frame was coded into a single byte.

The MEL+ and PLP feature vectors are represented in different
fashions at the input to the connectionist probability estimator. The
recurrent network builds up a representation of the past acoustic
context which implies the ordering of the input data is important. The
ABBOT system utilizes recurrent networks trained using forward- and
backward-in-time input sequences of both MEL+ and PLP feature
vectors. Additional acoustic context is encoded into the network
inputs by augmenting the feature vectors with either adjacent frames
or estimates of the feature derivatives.

2.2. Recurrent Network Structure
The basic acoustic modeling system is illustrated in figure 1 and fully
described in [5, 6]. For each input frame, an acoustic vector, u(t),
is presented at the input to the network along with the current state,x(t). These two vectors are passed through a standard single layer,
feed-forward network to give the output vector, y(t � 4), and the
next state vector, x(t + 1). The sigmoid and softmax nonlinearities
are applied to the state and output nodes, respectively. The output
vector represents an estimate of the posterior probability of each of
the phone classes, i.e.,

yi(t) ' Pr(qi(t)jut+4
1 )(1)

where qi(t) is state i at time t and ut
1 = fu(1), …,u(t)g is the input

from time 1 to t. The output is delayed by four frames to account for
forward acoustic context. The state vector provides the mechanism
for modeling context and the dynamics of the acoustic signal. There
is one output node per phone and the recurrent network generates all
the phone probabilities in parallel.
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Figure 1: The recurrent network used for phone probability estima-
tion.

The acoustic training procedure is fully described in [5, 6]. The
approach is based on Viterbi training where each frame of training
data is assigned a phone label based on an utterance orthography
and the current model. The recurrent network is then trained – using
the back-propagation-through-time algorithm [7] – to map the input
acoustic vector sequence to the phone label sequence. The labels are
then reassigned and the process iterates. The initial alignments for
the ABBOT system were derived from a recurrent network trained on
the TIMIT database.

2.3. Front-end Model Merging
The ABBOT results from the 1993 ARPA evaluations showed a dra-
matic performance improvement from merging multiple recurrent
networks trained on different input representations. A linear merg-
ing approach was used for the 1993 system, i.e., setting

yi(t) =
1
K

KX
k=1

y(k)
i (t)(2)

where y(k)
i (t) is the posterior probability estimate by the kth model.

Recent work [8] has indicated that a better approach is to merge the
network outputs in the log domain, i.e.,

log yi(t) =
1
K

KX
k=1

log y(k)
i (t) � B(3)

where B is a constant to insure that y is a valid probability distribu-
tion. The log-domain merge is the approach used by the 1994 ABBOT

system.

2.4. Talker-Cluster Merging
Recent work on merging networks trained on different talkers has
been motivated by two factors. The primary goal was to fully utilize
the great amount of training data available. Due to memory and
time limitations, it was difficult to directly train a recurrent network
using the full SI-284 training corpus. The approach taken was to
use multiple networks trained from subsets of the data and merge
the outputs. The second motivating factor for this approach was
to reduce the effects of inter-speaker variability. To minimize this
effect, multiple connectionist models are each trained on a subset of
the training data. The subsets are formed by clustering the utterances
so as to minimize the variability within each subset.

Talker Clustering The talker clustering is based on the LBG al-
gorithm for vector quantization [9] using a distance measure which
has been shown to give good discrimination performance for speaker
identification [10]. The clustering algorithm is a hierarchical divi-
sive procedure and starts with a single cluster consisting of a pattern
vector for each training utterance. The pattern vector is the sample
covariance matrix S of the input data from the utterance. Each clus-
ter j is described by a cluster covariance matrix Σj derived from the
utterances in the cluster. The data is randomly split into two disjoint
clusters and the cluster covariances are re-computed. Each pattern
is assigned to a cluster based on estimate of the log-likelihood of S
given Σj, i.e.,

l(S; Σj) =
Nn
2

n
log(jΣ�1

j Sj)1/n � 1
n

tr(Σ�1
j S)

o
.(4)

Here, N is the number of samples in the utterance, n is the dimen-
sionality of the feature vector and tr indicates the trace of a matrix.
The cluster covariances are re-computed after all of the patterns have
been assigned to a cluster. This process continues until each cluster
is stable and there is no movement of patterns between clusters. The
cluster consisting of the largest number of patterns is then randomly
split into two clusters, and the process continues as before. This con-
tinues until the desired number of clusters – five in the experiments
described here – have been created.

For reasons related to training of the recurrent networks, i t is desirable
to have the same number of tokens in each cluster. This is accom-
plished by assigning a scale factor βj to each cluster log-likelihood
score. This subset-size normalization is applied after completion
of the clustering algorithm. The clustering procedure is then re-run
using fixed cluster covariances and only re-assigning the utterance
labels. This is an iterative procedure where βj is defined as

βm
j =

n
1 +
�nj � N

N

� �o βm�1
j(5)

and where nj is the number of patterns in cluster j, N is the desired
number of patterns per cluster, m is the iteration, and � is a small
constant.

Merging Based on Talker Cluster Each cluster is defined in terms
of its covariance Σj, its weight βj and a list of utterances Uj which
generate the covariance. The Uj are used as training data for cluster
dependent models. Thus, for each subset of the data, a recurrent
network is trained to estimate phone probabilities. When an utterance
is to be decoded, the covariance of the acoustic feature vectors S is
computed. The posterior probability of the jth cluster model ωj given
the data U is then estimated by

P(ωjjU, α) ∼ l(S; Σj)
αβα

j(6)

where α is an empirically determined tuning parameter. The outputs
of the recurrent networks are then merged using

yi(t) =
KX

k=1

P(ωkjU, α) y(k)
i (t).(7)

The 1994 ABBOT system utilized both front-end and talker-cluster
merging. With four different feature representations and five talker
clusters, this resulted in training and decoding with twenty recurrent
networks with approximately two million free acoustic modeling pa-
rameters. Generating the output probabilities was accomplished by



first merging across cluster for each feature representation and then
log-domain merging across each feature representation. The compu-
tational requirement for the recognition-time probability estimation
process can be significantly reduced by a factor of five by only using
the most probable cluster (i.e., setting α = ∞) with only a minimal
impact on performance.

3. PHONE DELETION PENALTY
During the investigation of different phone-duration models, it was
discovered that providing a phone deletion penalty could substan-
tially improve the recognition performance [11]. The phone deletion
penalty is a multiplicative scale factor to the state path likelihood,
i.e., the applied state path likelihood is given by

Lapp(path) = κnL(path)(8)

where L(path) is the path likelihood specified by the Markov process
on the states, κ is the phone deletion penalty, and n is the number of
phones in the path. For κ > 1, this approach discourages deletions.
This value was determined empirically on development data.

4. LEXICON AND LANGUAGE MODEL
Three different word lists and four different language models were
used in the experiments reported in this paper. The standard word
lists used were the 5k word, closed vocabulary specified for the 1993
H2:C1 test, and the 20k word, open vocabulary specified for the
1994 H1:C1 test. A lexicon with 65,532 entries was also developed.
The word list was generated from the complete set of WSJ text data,
including the material used as development data. The procedure for
determining the word list is as follows:

1. Every year of WSJ text data (excluding the development test
data) was split into two, and unigram count files were derived
for the fifteen periods from the start of 1987 to the first half of
1994.

2. Each unigram count file was converted to a unigram p.d.f. then
weighted by α t where 0. 0 < α � 1. 0 and t was the number of
six month periods before the first half of 1994. The result was
summed and then renormalised to a p.d.f. The word frequency
list was examined and a list of 1,526 non-words was created to
be excluded from the lexicon. These were mostly misspellings,
acronyms and formatting errors. The most probable 65,536
words not in the excluded list were extracted and the out-of-
vocabulary (OOV) rate computed for the development test set.

3. Step 2. was repeated to find the α that minimised the OOV rate.

4. Steps 1. and 2. were repeated with the fixed α and the develop-
ment test material included. The most frequent 65,532 words
formed the final lexicon.

This goal of this procedure is to discount those words that did not
occur recently.

The 1993 ABBOT system used a pronunciation lexicon supplied by
Dragon Systems [12]. This lexicon provided coverage for the SI-284
training and 1993 CSR evaluations. The corresponding phone set
uses 79 phone symbols where the vowels have three levels of stress.
Because of the new requirements for larger and different vocab-
ularies, the 1994 ABBOT system employed pronunciations derived
primarily from a lexicon supplied by LIMSI-CNRS. The LIMSI-
CNRS lexicon did not provide full coverage of the 65,532 words

specified in section 4 and was expanded in the following fashion.
First, the 1993 LIMSI dictionary was extended with those words that
could easily be derived from the existing entries by the addition of
suffices or the merging of two words. This resulted in approximately
35,000 entries. The remaining entries were obtained by the Interna-
tional Computer Science Institute (ICSI) from the CMU, COMLEX,
TIMIT, OGI Numbers, and BEEP dictionaries and a TTS system
using a probabilistic mapping technique to unify the phone sets and
provide multiple pronunciations [13]. A set of rules provided by ICSI
were employed to expand the phone set/lexicon to specify stops as
flaps or closures and (possibly) releases [13]. This resulted in a total
of 54 phones in the lexicon. Multiple pronunciations were assigned
probabilities based on their frequency of occurance in the training
data [2].

The standard language models used were the 1992 20k, open, non-
verbalized punctuation trigram, the 1993 H2:C1 bigram, 1993 H2:P0
trigram, and the 1994 H1:C1 trigram language models. For the
65,532 word list, the CMU language modeling tools were used to
build a standard 1-3 backoff trigram language model. This language
model was based on the counts of both the full training and develop-
ment test sets. Note that standard text processing was used without
modifications to the text filters.

5. DECODER
The acoustic modeling in ABBOT is somewhat different to the context-
dependent mixture model approach used in most other systems. In
particular, the following differences have proven to be important in
the design of an efficient decoder:

• The connectionist system directly estimates posterior probabil-
ities, P(phone j data), rather than likelihoods, p(data j phone);

• Context-independent acoustic modeling leads to a small set of
basic HMMs (typically 40–80), rather than several thousand
context-dependent models;

• Connectionist probability estimation enables the computation
of all phone probability estimates at each frame without much
additional computational cost.

By making effective use of these properties of hybrid systems, the
single-pass decoder – referred to as NOWAY – operates at approxi-
mately 15× realtime on an HP735 workstation for a 20,000 word task
using a backed-off trigram language model. At the cost of 7% rela-
tive search error, decoding time can be speeded up to approximately
realtime.

5.1. Basic Algorithm
The search algorithm described here is partially time-asynchronous
and is based on the ideas of stack decoding [14, 15]. The Viterbi
criterion is used — i.e., the full likelihood is not computed — so the
algorithm may be regarded as a reordered time-synchronous Viterbi
search. For simplicity of presentation, we consider decoding a single
utterance of length T .

The basic data structure of the search algorithm is a priority queue,
or stack. The elements of the stack are hypotheses; a hypothesis
h contains a proposed decoding Wh up to a given reference time
th with a log likelihood Lh. Wh is comprised of a word sequencefwh(0), wh(1), …g.



A fundamental decision that must be made in the stack decoding
algorithm is which hypothesis in the stack should extended. To
avoid using a multi-pass or look-ahead approach, an approximation
to the A∗ criterion is used which utilizes an estimate of the least
upper bound on the likelihood of all paths at a particular time. Using
this approximation, hypotheses need only be compared with other
hypotheses with the same reference time. This implies using a set
of stacks: one for each time frame of the utterance to be decoded.
This approach has been successfully used by Bahl and Jelinek [14]
and Paul [15]. In NOWAY, an initial estimate of lubL(th) (the least
upper bound at time th) is generated from the network outputs. The
n most probable phone posteriors (not including the most probable)
are averaged and converted to a scaled likelihood by dividing by a
uniform prior. This estimate of lubL(th) is then updated whenever a
particular hypothesis extension has a higher likelihood at th.

The bulk of the work is done when propagating the active hypothe-
ses forward in parallel. For efficiency, the lexicon is stored as a
tree. Each node in the tree corresponds to a phone in a particular set
of pronunciations and the use of this structure reduces the number
of constituent phone models required by a factor of three or four.
The root node of the tree corresponds to a pause model — a single
state silence model which may be skipped — to allow for optional
inter-word pauses. The set of hypotheses (with the same extension
start-time) is propagated through the same tree and share acoustic
information with their scores differing only in language model infor-
mation and start scores. The tree is searched in a time-synchronous,
breadth-first manner, although there is no a priori reason for prefer-
ring this to a depth-first search.

The basic decoding algorithm can be summarized as follows:

1. Set t = 0; lubL(τ) = �∞ , 0 � τ < T ; Initial null hypothesis:
th = 0; Lh = 0 and Wh = NULL.

2. Push initial hypothesis onto stack(0).

3. If (end-of-utterance) output top of stack(t) and exit.

4. Else process stack(t):

• Pop all hypotheses into active hypothesis list, hlist.

• If hlist is not empty expand hypotheses in parallel:

– Activate root node of lexical tree

– Propagate hypotheses forward time-synchronously
and activate new nodes

– Prune active nodes according to likelihood-based
and posterior-based pruning criteria (see section )

– Update lubL(t) if required
– At word-end nodes within envelope, extend hy-

potheses by one word, incorporate exact language
model (LM) score, push hypotheses onto relevant
stack.

– Continue if any nodes are active

5. t ← t + 1; goto 3

The use of a language model is essential to constrain the search space
in large vocabulary recognition. However there is a tradeoff between
accessing the required language model probabilities and the effi-
ciency gain obtained in the search by their application. Incremental
caching of language model probabilities as they are accessed is used
to aid efficient retrieval. In a tree-based lexicon, the correct way to

take advantage of the language model to reduce the search is by com-
puting the maximum language model probability for each node. This
involves taking a maximum over the language model probabilities
of all words that use that node in their pronunciation given the hy-
potheses that they are extending. This involves a significant amount
of computation, particularly in nodes close to the root of the tree
which are part of the pronunciations of many words. In these cases,
an approximated upper bound on the language model probability –
namely the maximum bigram probability given a context – is used
instead of the exact value. The set of default bigrams is computed
in advance and stored in a table. Experiments have indicated that
using this approximation is more efficient at all word-internal stages
of the search and the exact language model probabilities are used
only at word ends. Incremental language model caching is still used
at word ends, giving a 50% speedup. In this case, all hypotheses
are propagated in parallel and only individually evaluated at word
ends. Experiments in which individual hypotheses may be sepa-
rately pruned at each node have been carried out, but do not show
any efficiency improvements.

5.2. Pruning

In conventional and hybrid HMM systems, the search space is eval-
uated by computing likelihood estimates of the acoustic data having
been generated by a particular utterance model. Pruning strategies
are generally likelihood-based and involve the specification of a enve-
lope ∆ around the likelihood L of the most probable partial hypothesis
at time t. Hypotheses whose likelihood falls outside the envelope
(i.e., those hypotheses with a likelihood L′ < L � ∆) are pruned.
The number of hypotheses on the stack is also limited which pro-
vides another mechanism for reducing the search space. Both these
likelihood-based pruning strategies are used in the ABBOT system.

Another NOWAY pruning strategy makes use of the phone posterior
probabilities estimated by the connectionist system. These probabili-
ties may be regarded as a local estimate of the presence of a phone at a
particular time frame. If the posterior probability estimate of a phone
given a frame of acoustic data is below a threshold, then all words
containing that phone at that time frame may be pruned. This strategy
can be efficiently implemented within a tree structured lexicon and
is referred to as phone deactivation pruning. The posterior prob-
ability threshold used to make the pruning decision is empirically
determined using development data and is constant for all phones.
Phone deactivation pruning takes advantage of the fact that ABBOT’s
basic acoustic component directly estimates posterior probabilities
rather than likelihoods. To carry out an equivalent approach in a
likelihood-based system requires summing over a (possibly large)
set of baseform HMMs.

Acoustic Input
System ID Lexicon Training Format

1 Dragon SI-84 5 frame window
2 LIMSI SI-84 ∆ parameters
3 LIMSI SI-284 ∆ parameters

Table 1: Summary of systems. The input format column refers to
what information is presented at the input of the recurrent network
and ∆ indicates that differenced parameters are used.



6. RESULTS
Results are reported on evaluation and development tests from the
1992, 1993 and 1994 ARPA CSR evaluations. The particular tests
evaluated in this paper are:

20k(92) The 1992 evaluation test using an open 20,000 word
vocabulary with non-verbalized punctuation.

S5(93) The 1993 spoke 5 development test using a 5,000 word,
closed vocabulary (Sennheiser microphone).

H2(93) The 1993 small-site hub 2 evaluation task using a 5,000
word, closed vocabulary.

H1(94) The 1994 hub 1 evaluation task using an unlimited vo-
cabulary.

Various systems – reflecting the progression of ABBOT from the 1993
to 1994 ARPA CSR evaluations – were evaluated on the above tests.
These systems are summarized in table 1. Please note that all the
results reported here are not phone-mediated and the 1994 results are
pre-adjudication. Unless otherwise noted, systems trained on SI-84
utilized front-end merging while systems trained on SI-284 utilized
both front-end and talker-cluster merging.

6.1. Acoustic Modeling Results
Table 2 shows the performance of the two SI-84 systems on the
H2(93) task. The top of the table shows the performance of the
system using various single recurrent networks as the acoustic model
(i.e., no merging). Here F- and B- indicate forward- and backward-in-
time input to the recurrent network, respectively. The bottom rows
of the table show the performance for a linear merge, log-domain
merge, and log-domain merge with the phone deletion penalty.

Table 3 reports the ABBOT results for going from SI-84 to SI-284
training. Although the improvement is significant, it is not as great
as seen by conventional HMM-based systems. This is probably due
to insufficient training and improvement is expected with further
investigation into the training schedule.

The results for different methods of talker-cluster merging are shown
in table 4. The table shows that using only the most probable talker
cluster has no real adverse affect on the performance. The table
also shows the performance improvement gained by expanding the
lexicon to 65,532 words. The difference in performance reflects the
difference in OOV words between the two lexicons.

Error Rate, %
Feature System 1 System 2
f-MEL+ 16.2 15.5
b-MEL+ 16.1 15.7
f-PLP 16.5 16.1
b-PLP 15.2 15.3
linear merge 13.4y 13.7
log merge 12.4 13.0
log merge + phone del. pen. 10.9 12.1

Table 2: Results showing the performance improvement for merging
and phone deletion on the H2(93) task. Both systems utilize the
standard bigram language model. A version of ABBOT close to the
1993 CSR H2:C1 evaluation system is denoted by y.

Error Rate, %
Test System 2 System 3 Improv., %
H2(93) 9.3 8.1 13
H1(94) 17.5 14.7y 16

Table 3: Comparison of SI-84 and SI-284 acoustic training. Sys-
tem 2 and 3 reflect SI-84 and SI-284 training, respectively. Both
systems use the standard 1993 5k vocabulary and trigram language
model for the H2(93) test and the standard 1994 20k vocabulary and
trigram language model for the H1(94) task. The 1994 CSR H1:C1
evaluation system is denoted by y.

Talker Cluster Lexicon Error Rate, %
merged 20k 14.7y
most probable 20k 14.8
merged 64k 12.9z

Table 4: Performance for using talker-cluster merging and 65,532
word lexicon evaluated on the H1(94) with system 3. The 1994
CSR H1:C1 and H1:P0 evaluation systems are denoted by y and z,
respectively.

6.2. Decoder Results
Table 5 illustrates the NOWAY decoding performance relative to the
phone deactivation pruning threshold. Note that applying posterior-
based pruning with a threshold of 0.000075 gives around an order
of magnitude improvement in the decoding speed with an increased
relative search error of less than 2%. The best parameter setting
for realtime decoding is not shown in the table. However, using
a posterior threshold of 0.0005, an envelope of 8 and a stack size
of 7 results in realtime performance (on an HP735) with a relative
search error of around 7%. On the H1:P0 task with 65,532 words and
trigram language model, a decoding speed of 20 × realtime (HP735)
was obtained with 2% relative search error (13.0% word error) using
a posterior threshold of 0.000075, an envelope of 9 and a stack size
of 15. As a final note on decoder performance, initial results indicate
that the NOWAY decoder running on a PC (90MHz Pentium) with
64Mbytes of memory takes only twice as long as an HP735.

Pruning Parameters S5(93) 20k(92)
Envelope Threshold Time Error Time Error

10 0. 0 165.3 12.2 175.1 12.4
10 0.000075 16.1 12.1 15.7 12.6
10 0.0005 4.3 12.2 3.9 12.9
10 0.003 1.4 14.3 1.3 14.9
8 0.0 46.8 12.5 50.4 12.6
8 0.000075 5.4 12.2 4.9 12.8
8 0.0005 1.7 12.6 1.5 13.6
8 0.003 0.6 15.0 0.6 15.8

Table 5: Decoding performance with respect to varying phone deac-
tivation pruning threshold. The maximum stack size was set to be 31.
In cases when the posterior-based pruning threshold was greater than
0.0, posterior-based pruning of leading silence was also employed.



7. SUMMARY
There are a few general conclusions which can be drawn about the
1994 ABBOT system.

• Log-domain merging and the application of a phone deletion
penalty provide a simple, but effective means of improving the
recognition performance.

• Although a significant improvement was gained by going from
the SI-84 system to the SI-284 training, it was less than that
reported by conventional HMM systems. Efficient use of the
additional training data is still an important research area.

• The decode-time acoustic model computation can be reduced
by 80% with only a minor degradation in recognition perfor-
mance by using the most probable cluster.

• The development of the NOWAY decoder has been very success-
ful. In particular, the extension to larger lexicons, the capability
for long-span language models, and the use of phone deactiva-
tion pruning has resulted in a very powerful recognition system.

Considering that context-independent phone models are used for the
sub-word HMMs, the performance of the ABBOT system – although
certainly not the best – is quite good. Further work planned for the
ABBOT system includes the continued investigation of talker-cluster
merging approaches, training of the recurrent networks, application
of context-dependent phone-duration models, the use of alternate
input representations and the development of speaker-adaptation ap-
proaches.
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