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Abstract

This paper looks at the data representations
used in recurrent networks for two of the
supplied sentences for the workshop. One
sentence from the database on which the
network was trained (timit) is used to illus-
trate the input, state and output represen-
tations for clean speech. Another sentence
(clean) is used to illustrate the degradation
that results from different recording condi-
tions. Gradient descent in the input space
is used on the second sentence so as to make
the output better conform to the assumed
pronunciation.

1 Introduction

This paper takes the opportunity to present
different levels of representation in a re-
current network phone recogniser (Robin-
son and Fallside, 1991) on standard sen-
tences. This recogniser has been shown
to give good performance on a standard
database (timit), and so one sentence from
this database is analysed. A sentence
recorded under different conditions (clean)
is also analysed, and recognition is seen to
be considerably worse. Analysis for the
other two sentences (dirty and spont) has
been carried out, but is not presented here
as there is sufficient difference in quality be-
tween the two analysed sentences.

The first three sections detail the input,
internal and output data representations of
the network, along with the associated pro-
cessing. In the next two sections the data

representations are given for the sentence
from the training database, including a plot
of the state space variables. This is fol-
lowed by two sections analysing the other
sentence and computing the input represen-
tation which yields an output closer to the
assumed transcription of the sentence.

2 The preprocessor

The preprocessor used in this system 1is
fairly conventional. A hamming window
of width 256 samples is applied the speech
waveform every 16ms. From this window
the following features are extracted:

e The log power.

e An estimate of the fundamental fre-
quency from the position of the highest
peak in the autocorrelation function.

e An estimate of the degree of voicing
from the relative amplitude of the high-
est peak in the autocorrelation func-
tion.

e A power spectrum using a FFT which
power normalised then grouped into 20
mel scale bins and cube rooted.

After the preprocessor, all channels are
normalised and scaled to fit into a byte us-
ing a monotonically increasing function such
that every value is eqi-probable. On pre-
sentation to the network, these values are
expanded into a Gaussian distribution with
zero mean and unit variance.



This data will be presented at the top of
every diagram, in the order above reading
from the bottom up. Thus the top twenty
channels on the page form a spectrogram.

3 The recurrent net

Recurrent networks have been shown to give
good estimates of the class conditional prob-
abilities needed for Markov model based
speech recognition systems (Morgan and
Bourlard, 1990; Robinson, 1991). The net-

work architecture used is shown below:
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Figure 1: The Recurrent Error Propagation
Network

Inputs from the preprocessor, u(t), is pre-
sented to the network along with the state
vector, x(t). A single layer network com-
putes the output, y(£+1), and the next state
vector, (t+1). The internal state units are
considered to be independent estimators of
unknown features.

4 Why
space?

use a state

The use of a recurrent network for phone
probability estimation differs significantly
from other approaches (e.g. the standard
discrete, continuous or semi-continuous
HMM estimators, or the use of non-
recurrent networks) in the use of an inter-
nal state. Hence, conventional approaches

are memoryless and contextual variation is
explicitly modelled using mechanisms such
as triphones or gender dependent networks.
In contrast, the recurrent network employs
an internal state trained by gradient descent
for contextual modelling.

The acoustic realisation of a phoneme is
known to depend on coarticulation effects
from the immediate phonetic context. The
triphone approach to modelling this varia-
tion assumes that a window including the
preceding and following phoneme is suffi-
cient to capture the contextual variation,
and so builds a model for every triplet of
phonemes which occur in the language. As
well as requiring considerable storage for the
models, good smoothing techniques across
models are needed so that the parameters
may be reliably estimated. Connection-
ist probability estimation normally takes a
data-driven approach to this problem by ef-
fectively enlarging the window on the ob-
servations to encompass the relevant infor-
mation. However, a simple finite window is
both inefficient in terms of the increase in
the number of free parameters with window
size, and in terms of run time computation.
This limits the window size that can be used
although tied weights, such as employed in
the time-delay neural network, can reduce
these problems. However, a finite window
size will always limit the temporal scope of
the contextual information. Use of feedback
within the network allows the accumulation
of information over an arbitrary long period
and avoids the duplication of processing as-
sociated with presenting multiple observa-
tions as a single input.

In experiments where the gender of the
speaker was explicitly presented to the net-
work, no change in recognition rate was ob-
served. Similarly, training two networks for
female and male speech, and testing on the
appropriate set yielded a drop in perfor-
mance, apparently because there was not
enough data to make a good estimation of
the parameters for the female model. In
conventional systems, reasonable increases
in performance are gained by having gen-
der dependent models, the lack of similar
behaviour with recurrent networks suggests
that this information is being successfully
held in the internal state.



5 A clean
TIMIT

For the TIMIT speech, the recurrent net
is used to produce the activations in fig 2.
The display is in two parts: the top part
shows the output of the preprocessor as the
input to the network; the bottom part shows
the output of the network as phone occur-
rence probabilities. Target outputs, as pro-
vided by the hand labellers, are shown by
the shaded regions. It can be seen that
the recurrent net closely models the task
of the hand labeller. When the maximum
likelihood symbol string is extracted with a
Markov model, there are the following er-
rors:

analysis:

e T'wo substitution errors: The word “in”
is labelled as [ix ngl and recognised
as [iy ngl, and the word “year” is la-
belled as [y ih axr] and recognised as
[y ux axr].

e One insertion error: [v] is recognised
between “wash” and “water”.

e One deletion error: [y] in “had your”
is lost.

Four errors in 41 symbols is an unusu-
ally low error rate for this classifier. On the
full TIMIT test set the error rate is 30.3%
(3.7% insertions, 20.5% substitutions, 6.1%
deletions).

6 A look at the state
space

The dimensionality of the state space for the
recurrent net is 176. For display reasons,
only the first 32 outputs are shown at the
top of figure 5. Immediately obvious is a
large degree of temporal correlation. The
R.M.S. difference between successive state
vectors is shown at the bottom of the figure,
under the dashed line. If each element in
the state vector were subjected to additive
noise, then the maximum information would
be transmitted if the state values were ran-
domly distributed between 0 and 1. Under

this assumption the expected R.M.S. differ-
\/1/6 or about 0.41. The observed

R.M.S. difference is 0.07. However, in prac-
tice there is no explicit noise added to the
state units, so the underlying correlations in
the acoustic data and the limited process-
ing capabilities of the (effective) single layer
network give a correlated structure.

Looking at the temporal structure, it can
be seen that while there are large changes
in the network output, these are not on the
whole reflected in all the state units. Thus
the R.M.S. difference does not give phone
boundary information. However, this is to
be expected if the contextual information is
fully utilised, as the time scale of informa-
tion to pass through the network is of the or-
der of the mean phone duration, so changes
to the state vector will be blurred over the
extent of the phone.

ence 1s

7T A dirty
CLEAN

In contrast to the TIMIT sentence, the
same network is used for recognition on the
“clean” sentence. This sentence has been
recorded through a low pass filter with a cut
off of 2.8kHz. In this case a transcription is
not available, so the pronunciations given in
table 1 are assumed.

analysis:

SENTENCE-END | h#

Fred f r eh dcl

can k ae n

go gcl g ow

Susan S uw z en

can+t kcl k ae n tcl
go g ow

and ae n dcl d
Linda 1l ih n dcl d ax
is ih z

uncertain ah n s er tcl t en

Table 1: Pronunciations used

These pronunciations were concatenated
and a viterbi alignment performed with the
Markov model. The results are shown in fig-
ure 3, again the target phones are shaded.



In this case it can be seen that the network
output vastly disagrees with the assigned la-
bels, in fact only 35% of the frames agree in
labelling. The loss of the high frequency
part of the spectra causes the occurrences
of [s] to be recognised as [f], as well as
many other errors. However, it can be seen
that the boundaries given by the viterbi al-
gorithm are often aligned with sharp acous-
tic changes and with a change of recognised
symbol.

8 The “ideal input” rep-
resentation

The “ideal input” representation is that in-
put which minimises the cost function of the
network over the whole sentence. This can
be achieved by gradient descent in the input
space (Linden and Kindermann, 1989), and
this method has been proposed for speech
synthensis by recognition (Fallside, 1990).
After three hundred iterations of gradient
decent through the fixed weights no further
reduction in the cost funtion occured, and
the resulting input and output space is as
shown in figure 4. The frame by frame er-
ror rate has been halved from 65% to 32%,
although many segments are still incorrect,
especially the vowels. Even though consid-
erable change in the input space had oc-
cured, the final output is still worse than the
TIMIT sentence, so it may be concluded
that a better input exists than was found
with gradient descent. Interestingly, the
“ideal input” representation contains many
non-speech features in that the normal con-
straints of smoothness in the time and fre-
quency domains have been relaxed. For in-
stance, in the first [s] there is one frame
where a single channel has zero energy.

9 Conclusion

This paper has presented an analysis of the
recurrent network on two sentences. Whilst
good recognition results are possible on a
sentence taken from the training set, this
performance shows considerable degrada-
tion on sentences recorded under other con-
ditions. This illustrates the need for an

acoustic analysis robust to such variations.
The “ideal input” has been calculated for
one sentence, and found to have several non-
speech features. Hence there is consider-
able scope for improvement of this recog-
nition framework to increase the robustness
to recording conditions and to make more
accurate models of the speech dynamics.
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Figure 2: Actual network input and output for the TIMIT sentence
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Figure 3: Actual network input and output for the “clean” sentence
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Figure 4: “Ideal” network input and output for the “clean” sentence
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Figure 5: The first 32 state activations for the TIMIT sentence
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