
The aim of this paper is to put Arti�cial Neural Network techniques in perspective, dis-
cussing the practical issues of network design and implementation. Firstly, a comparison
is made with other pattern matching techniques with an overview of the capabilities and
complexity of these techniques. Some basic ground in multi-layer perceptrons is then cov-
ered so that a link may be made between these and Gaussian classi�ers. In the process,
some of the practical di�culties associated with gradient descent based training are cov-
ered, along with the popular remedies. Finally, the paper is concluded with a summary
of the advantages of recurrent networks and a review of the architectures available.

If the problem is simple enough, there is no need to invoke a complex tool to solve it.
For instance, if a linear function can perform the required mapping, then it is likely
that standard linear techniques are more appropriate [1]. Similarly, if there are su�cient
training examples to populate the input space to the resolution required, then averaging
over radius of resolution will give an acceptable solution. If the input space can be
partitioned with su�cient samples falling into each partition, then the output for each
partition can be precompiled.

In many interesting real-world tasks, the form of the solution is not known, and there
are insu�cient examples to use simple partition and average techniques. Thus it is nec-
essary to use a more complex form of smoothing in the input space. The technique of k
nearest-neighbours does this very neatly by averaging over the k training patterns that
are closest to the probe input. This has the advantage of �ne resolution in the densely
populated areas, whilst maintaining a su�cient number of data points to maintain the
accuracy of the result. The search for the nearest neighbours can be made fast using
kD trees, and it is possible to hard limit the size of the tree for the continuous learning
case [2]. There can be a large di�erence in the variance of the input dimensions, in which
case a weighted Euclidean distance metric is more appropriate for �nding the nearest
neighbours.
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The �eld of arti�cial neural networks, or , covers a wide variety of techniques
and models [4, 5, 6, 7, 8, 1, 9]. In general, arti�cial neural networks are used to model a task
by adapting internal parameters. Due to the non-linear nature of many arti�cial neural
networks, iterative techniques are often employed to perform the parameter adaptation,
which can then be reasonably viewed as a \learning" process. Tasks are usually speci�ed
in terms of modelling a data set.

The models consist of a large number of simple (
, or ) that in number can be used to generate non-linear mapping

functions to do useful tasks. Each processing element computes a simple function of the
other processing elements to which it is connected, and this result (activation) is made
available to other units. The pattern of interconnection of the processing elements leads
to a range of architectures:

Strictly are those where an ordering of the processing elements
exists such that the output of one processing element is only dependent on the input
of elements with a lower index. Thus the state of the network can be determined
by computing the activations of the processing elements in order.

If feedback is allowed, then the network becomes a dynamical system. Such
can be formulated in terms of discrete time [10, 11] or continuous time [12].

The feedback may be either used to settle to a �xpoint for a given input, or many
change as a function of the changing input.

These two architectures are shown in �gure 2. Units are shown as circles, and connections
between units as arrows. The architecture of the feed-forward network is one layer of

and two layers of .

In addition to the use of feedback discussed earlier, classi�cation of arti�cial neural net-
work techniques can be done in terms of the types of task and the training procedures
used. The task of composing a general mapping can be treated as non-linear function
approximation, and it has been shown that a standard non-linear unit (weighted sum and
sigmoid) can be used to construct any desired mapping [3]. However, there are number
of interesting special cases:

The task is to recall the closest training pattern given a partial
or corrupted input. As pointed out in [4], some care must be taken when using this
style of computation, since if the distance measure is well de�ned, then the network
can perform no better than simply searching the training set.

The task of is to form an internal model of the process su�cient to
generate the next point in a series. The �elds of system identi�cation and control
have long been applied to linear models and are now being applied to non-linear
systems [13, 14].
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principle or format for the outputs, such as minimising the information loss through
the model.

Back propagation [16, 17] is a gradient descent technique for cascades of non-linear but
di�erentiable functions. It can be applied to learn the set of weights associated with an
arti�cial neural network consisting of multiple layers of processing elements, as illustrated
in �gure 2. Such models are known as (MLPs) and normally
consist of weighted-sum nodes with sigmoidal activation functions. For a given set of
inputs, , and a set of weights, , the outputs of a standard feed-forward network are
given by:

net = (1)

=
1

1 +
(2)

The Euclidean distance measure is often used on the outputs (although see section 6.4):

=
1

2
all

patterns

( ) (3)

Di�erentiating this error measure with respect to the output of all units gives the
. This may be done directly for units in the output layer, and indirectly using the

chain rule for all other units.
Di�erentiating the error measure with respect to the weights and summing over all

patterns gives the direction of steepest descent.
Changing the weights by a small amount in the direction of steepest descent minimises

the error measure and so adjusts the internal parameters so as to better model the target
input/output pairs.

In practice, several modi�cations have to be made to get reasonable learning performance
from the back-propagation algorithm.

Perhaps the most fundamental problem is that strict gradient descent is not a practical
learning algorithm in that it assumes in�nitesimal changes in weight space on each it-
eration. More desirable is to make as large a change as possible on every iteration. A
simple method, known as adding , applies a �rst order �lter to the gradient
signal [17]. Thus changes in dimensions with oscillatory trajectories are damped in re-
lation to changes in non-oscillatory dimensions. Under suitable conditions it is possible
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to optimise this weighting of past gradients so the next step is conjugate to the last [18].
Alternatively, a line search can be performed along the direction of steepest descent until
a minima is found. Other methods iteratively adapt the weighting of past gradients so
the next step is liley to be conjugate to the last [19]. However, perhaps the most sucessful
methods keep a separate step size for every dimension in the weight space [20, 21]. The
sign of succesive changes to a weight is used to estimate whether the change made is too
great or too small, and so optimise the descent speed. An analysis of this technique is
prestented in [22, 23].

There are two extremes to the frequency at which the gradient information is used to
update the weights. One end of this is that of true gradient descent, which requires that
the partial gradients are summed over all pattern classes. The other end is to update
the weights on the basis of one pattern alone. If the number of patterns is small and
covers the whole of the pattern space, such the \exclusive or" toy problem, then summing
over all patterns is a good technique. However, real-world tasks require a large amount
of training data to specify a model accurately, but a much smaller amount to make a
poorer approximation. Iterative learning techniques have to re�ne poor approximations,
and during the initial training it is su�cient to only see part of the training set. This is
taken to the extreme in which maintains a per pattern update
throughout the training. For linear systems there are schedules for decreasing the gradient
weighting in order to ensure convergence. In the middle ground, it is possible to either
gradually increase the number of patterns used to estimate the gradient over, or maintain
per-pattern updating but increase the momentum smoothing factor to eventually average
over the whole training set. Finally, it should be noted that strict gradient descent will
�nd the �rst local minima, which may be not be a good solution. The use of stochastic
gradient methods may add su�cient noise to escape shallow minima.

The architecture and number of connections in a network are a critical part of the model
design. Too many or too few layers and the required mapping may take too long to train,
if at all. Most researchers using the basic architecture have settled on one hidden layer
and two layers of adjustable weights. This leaves the size of the hidden layers, and hence
the number of free parameters in the model. Too few, and the model won't even �t the
training data, too many and over�tting will occur so that poor generalisation is seen. One
easy way to limit the e�ects of over�tting is to keep back a proportion of the training data,
and test on this data periodically. Training stops when performance ceases to increase on
the . Some progress is being made by applying Bayesian methodology
to model selection [24], and weight constraints [25].

It is very important to use the right cost function, or error measure when parameter
�tting any model. In the case of arti�cial neural networks, this is closely related to a
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sensible choice of the activation function on the output units. Three simple cases may be
identi�ed:

In the case where the model is known to have a strong linear component, then it
is important to be able to model that. This means having linear output units and
direct connections from the input units to the output units. Under the assumption
of a Gaussian distribution of the predictor error, then minimising the mean squared
error maximises the mutual information between the target values and the predicted
values.

If the outputs are to be interpreted as the estimation of independent probabilities,
then the information di�erence between the target and actual output distributions
is given by the cross entropy distance measure:

= ( log( ) + (1 ) log(1 )) (4)

Similarly, if outputs are to be taken as a probability density function over N classes,
then the use of the activation function [26] on the outputs ensures that
the total sums to unity. A sensible distance measure is then to maximise the log
likelihood of the occurrence of the target class

= (5)

= log( ) (6)

These are only examples, the general principle is to pick a network architecture and cost
function that best �ts the task to hand.

There is obviously a great deal of similarity in the pattern classi�cation methods presented
in �gure 1. For instance, the Kohonen self organising feature maps can be shown to give
the same clustering as the K-means (or LBG) algorithm under certain conditions [27]. The
use of Gaussians for data smoothing or data modelling is also present in many techniques.
However, there is a fundamental split that needs to be addressed at this point. Dealing
only with classi�cation for simplicity, it can be seen that some techniques model the
likelihood of an observation, , given the class, , i.e. Pr( ), whilst others model the
posterior classi�cation probability, Pr( ). The two are of course related by Bayes rule:

Pr( )Pr( ) = Pr( )Pr( ) (7)

It is interesting to compute the posterior probabilities when the likelihoods of the data
from each class can be modelled by a Gaussian with mean, , and class independent
covariance matrix, �:

Pr( ) =
1

(2 ) �
exp

1

2
( ) � ( ) (8)
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given Pr( ) = 1, we have:

Pr( ) =
Pr( )Pr( )

Pr( )Pr( )
(9)

=
exp ( ) � ( ) Pr( )

exp ( ) � ( ) Pr( )
(10)

The computation of the Mahalanobis distance may be rewritten using the fact that �
is symmetric so � = � ,

( ) � ( ) = � � � + � (11)

= � 2 � + � (12)

Now dropping the constant multiplier to the exponential, factoring out exp( � ) we
have,

Pr( ) =
exp � � Pr( )

exp � � Pr( )
(13)

=
exp � � + log (Pr( ))

exp � � + log (Pr( ))
(14)

Finally we may de�ne

= � (15)

=
1

2
� + log (Pr( )) (16)

net = + (17)

to get the familiar softmax activation function:

Pr( ) =
exp (net )

exp (net )
(18)

or for the two class problem

= (19)

= (20)

net = + (21)

yielding the standard sigmoid activation function:

Pr( ) =
1

1 + exp ( net )
(22)

From this we can conclude that a single layer perceptron with sigmoidal/softmax output
units can correctly estimate posterior probabilities of classes with Gaussian distributions
and identical covariance matrices. Furthermore, provided that the samples close to the
class boundary are Gaussian, the estimate will be good. Su�cient units in the lower layers
of a multi-layer perceptron could rotate the input dimensions such that the restriction
of identical covariance matrices is valid, and perhaps massage the data to a Gaussian
distribution.
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For problems with sequential input, it is important to exploit the known structure in
order to make a good model of the system. The simplest method is to truncate the series,
giving the approach. This may be su�cient if the information needed
is known to decay rapidly outside the input window. However, this technique can only
deal with �nite context and equal weighting is given over the whole window. Increasing
the context available rapidly increases the number of parameters to be estimated, which
decreases the accuracy of the model.

For example, in the application of speech recognition, context information is important
in speech recognition at all levels of representation. On short time-scales, co-articulation
changes the pronunciation of phonemes due to physiological constraints on the rate of
change of the articulators. On a longer time scale, we can expect the voice characteristics
of the speaker to be constant, and so recognition should occur in the context of the
estimated speaker characteristics. Hidden Markov models attempt to incorporate these
context e�ects by considering �rst and second order di�erences of the acoustic vector.
The same e�ect may be achieved by using many consecutive frames as input to a sliding-
window multi-layer perceptron [28, 15], or the use of recurrent networks [11].

However, common computations need to be shared for accuracy of parameter esti-
mation and for run-time e�ciency. This may be achieved within the sliding window
framework by tying the weights from every frame of input to the hidden layer. The same
thing can be done for a range of hidden layer units, and this architecture is known as a
time delay neural network [28]. The use of shared weights can be seen as incorporation
of prior knowledge that subsections of the complete network should perform the same
computations. A related way of incorporating prior knowledge into network design is
to specify a range of values that the weights may adopt, or to specify the form of the
probability density function [25].

A more e�cient way of sharing computations is to employ feedback. This may be
achieved in a number of ways, which can be divided into supervised and unsupervised
methods for estimating the internal state. Historically, most connectionist research has
concentrated on the supervised methods:

Conceptually the simplest method is [17]. Here the
network is expanded in time, and at the end of the sequence the target values are
presented and the gradient signal calculated by back-propagating the error signal
in time. This has the disadvantage that no learning takes place until the end of the
sequence, and therefore requires some approximations to deal with non-terminating
sequences. Nevertheless, this is still a very useful technique.

To avoid the unrolling of the network in time, it is possible to limit the recurrence to
[29]. However, this method can't deal with feeding back information

that is not present in the output.

An approximation to back-propagation through time can be made by truncating the
error signal after one time step. If the hidden units of one time frame are presented
to the network input at the next time frame, then some context information is
fed forward in time. This network architecture is known as the

[30]. However, the truncation of the gradient signal can lead to problems
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in convergence, and there is no gain in reduced computational requirements over
back-propagation through time.

A neat way of achieving local learning in time is to limit the feedback to a fraction of
the past value of the unit. This scheme is known as [31].

Another approach is to place the burden of the feedback with the link connecting
the units. This is normally taken to be a time-independent multiplicative function,
but generalising this to a linear IIR �lter gives recurrent behaviour. Such

[14] have the advantage that the dynamics
can be analysed by linear systems theory.

Yet another approach is to carry a set of partial derivatives forward in time from
which the error signal can be calculated. This [11, 32]
has the appeal of a simpler structure than maintaining past inputs, although in
practice the required computation is much larger.

Finally, the [33] achieves fast sequential learning by
detecting correlations in the input and state units which are likely to be exploitable
in forming the output.

Unsupervised recurrent networks deserve a mention, for their potential if not for their
current degree of development. Here the aim is to form a dynamical system such that the
internal state retains the maximum amount of information from past inputs.

In the linear case, this may be achieved with [34, 35] which is
an iterative technique to perform principle component analysis on the input. Under
the appropriate assumptions, the information loss is minimised when the output
spans the subspace of maximum variance.

One approach to the non-linear case is to try to unpack the current state into the
last input and last state. Such a [11] has been found
useful for simple problems.

An alternative to the non-linear case is to try use all but one state output to predict
the remaining value. Non-linear decorrelation can be driven by the di�erence in
these values, which forms the basis of [36].

Feedback in recurrent networks adds stability problems during training. Many of the
approximations used to speed up the training of non-recurrent networks fail when the
parameters to be adapted occur to high order powers in the gradient descent procedure.
However, when used with care, these networks have the power to represent complex non-
linear dynamical systems.

In a number of other conditions it is advantageous to use connectionist approaches:

For a linear problem, if the number of input dimensions is large then it may no
be possible to invert the covariance matrix due to numerical stablility problems.
Iterative, gradient based techniques are more robust and may still converge.
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If an inverse model is required, then propagating derivatives though to the input
can be used to track changes in the input [37, 38]

Finally, there is the broad spectrum of non-engineering applications from the psyio-
logical modelling of collections of neurons to the psychological modelling of learning
in animals and humans.

Although arti�cial neural net techniques are obviously not the solution to every problem,
the examples given show that they can be usefully applied to a range of speech processing
problems. The technology is just a way of performing parameter estimation for non-linear
models, and whilst blind application may give a low-manpower solution to a problem,
forming a good model is normally more important. The iterative techniques involved mean
that the models normally take longer to train, although there are potential bene�ts of
large-scale parallelism given suitable hardware. In problems where the exact speci�cation
of a good solution is not known and a sensible neural net architecture can be found, these
techniques can provide the best approach to obtaining a good solution.
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