
A Recurrent Error Propagation Network

Speech Recognition System∗

Tony Robinson and Frank Fallside
Cambridge University Engineering Department,

Trumpington Street, Cambridge, England.
Enquiries to: ajr@eng.cam.ac.uk

Submitted Computer Speech and Language November 1990
To appear in Volume 5, Number 3, July 1991

Abstract

This paper describes a speaker independent phoneme and word recognition
system based on a Recurrent Error Propagation Network (REPN) trained
on the TIMIT database.

The REPN is a fully recurrent error propagation network trained by the
propagation of the gradient signal backwards in time. A variation of the
stochastic gradient descent procedure is used which updates the weights by
an adaptive step size in the direction given by the sign of the gradient.

Phonetic context is stored internal to the network and the outputs are
estimates of the probability that a given frame is part of a segment labelled
with a context-independent phonetic symbol.

During recognition, a dynamic programming match is made to find the
most probable string of symbols. This is done at a single level for phoneme
recognition and at two levels for word recognition.

The phoneme recognition rate for all 61 TIMIT symbols is 70.0% correct
(63.5% accuracy including insertion errors) and on a reduced 39 symbol set
the recognition rate is 76.5% correct (69.8%). This compares favourably with

∗The foundation of the work described in this paper was presented in June 1988 (Robin-
son and Fallside, 1989). The contents of this paper are based on a technical report of March
1990 (Robinson and Fallside, 1990a), which has been extended to include later work up
to November 1990 (Robinson et al., 1990; Robinson and Fallside, 1990b)

1



the results of other methods, such as HMMs, on the same database (Lee and
Hon, 1989; Levinson et al., 1989).

Analysis of the phoneme recognition results shows that information avail-
able from bigram and durational constraints is adequately handled within the
network allowing for efficient parsing of the network output. For compari-
son, there is less computation involved in the resulting scheme than in a
one-state-per-phoneme HMM system. This is demonstrated by applying the
recogniser to the DARPA 1000-word Resource Management task. Parsing
the network output to the word level with no grammar and no pruning can
be carried out in faster than real time on a SUN 4/330 workstation.

1 Introduction

The most promising approach to the problem of large vocabulary automatic
speech recognition is to build a recogniser which has an intermediate level at
which phonemes are represented and which is subsequently mapped onto a
string of words. Phonemes are the smallest linguistic unit that can be used
to distinguish meaning (Ladefoged, 1982, p 23). By their symbolic nature
they provide a natural boundary for speech recognition systems between the
lower level distributed representations such as the acoustic waveform and its
transformations, and the higher level symbolic representations such as words
and the representation of syntactic and semantic knowledge. The phoneme
recognition approach is practical because the number of phonemes is small
(about 45) compared with the number of words in a large vocabulary task
(at least 1000). Thus speaker independent phoneme models may be trained
with a much smaller speech corpus than would be required to train speaker
independent word models.

Currently the best established technique for large scale automatic speech
recognition uses Hidden Markov Models (HMMs) (Levinson et al., 1983;
Rabiner et al., 1983; Rabiner and Juang, 1986). Recently, connectionist
models (Rumelhart and McClelland, 1986; Kohonen, 1988) and more partic-
ularly, error propagation networks (Rumelhart et al., 1986) have been used
with some success in this field (Bourlard and Wellekens, 1987; Waibel et al.,
1987; Franzini et al., 1989; Lippmann, 1989). The main differences between
the HMM and connectionist approach using error propagation networks are:

• Error propagation networks provide a discriminant decision, i.e. the
training minimises the distance to the target class and maximises the
distance to the other classes. Standard HMMs lack this ability although
work is now being done to develop discriminant HMMs (Bahl et al.,
1986; Young, 1990).

2



• Recurrent nets can use internal storage for short term context infor-
mation. Thus the output can represent context-independent phonemes.
This contrasts with the HMM approach where context-dependent phonemes,
such as generalised triphones, are needed to achieve good performance (Lee,
1989).

• Recurrent nets have an inherent mechanism for adapting to speaker
variability. Information relating to type of speaker (e.g. female/male)
can be gathered from the input and accumulated over time in the state
vector. The recognition process can then use this slowly varying in-
formation to make a more accurate classification. There is no such
mechanism in word HMMs which consist of concatenated independent
phoneme models, although a similar effect can be achieved through an
external mechanism such as the remapping of codebooks.

• Error propagation networks are trained by a gradient descent proce-
dure which is considerably slower than HMM Baum-Welch parameter
reestimation.

• The sequential nature of the speech signal at the phoneme level is more
naturally expressed by the state transitions in a Markov model than
by the development of the state vector in a recurrent net. As a result,
the state sequence of phoneme HMMs can be concatenated to yield the
state sequence for word models but no equivalent operation has been
applied to recurrent nets.

The first three points may yield a higher recognition accuracy for recurrent
nets and the last two points may be overcome with sufficient computational
resources and the use of Markov models for higher level processing. This
suggests that recurrent error propagation networks are worth investigating
as an alternative to HMMs.

The strategy adopted here is to pass frames of windowed speech through
a preprocessor which are then fed to a recurrent net. This net is trained
to model the frame-by-frame classification of the TIMIT database. A dy-
namic programming postprocessor is then used to convert this distributed
representation into a string of phoneme and word symbols representing the
sentence.

1.1 The TIMIT and Resource Management Databases

Accurate comparison of different speech recognition systems is a difficult task.
It is therefore important to evaluate recognisers on a standard database. The

3



DARPA TIMIT Acoustic Phonetic Continuous Speech Database (Garofolo,
1988) (hereafter referred to as the TIMIT database) has been designed to be
used for training recognisers at the phoneme level. It has become the most
widely available database of its size and type.

At the time of writing, only the December 1988 Prototype CD-ROM was
available. This contains all the training material of the full database but none
of the test material. Thus, it was necessary to partition this database into
training and testing portions. There are 420 speakers in total which were
divided into 317 speakers for training and 103 speakers for testing. Eight
sentences were used per speaker (the si and sx sentences). The identity
of the test speakers are given in table 1, those marked with an asterisk are
believed to have been used by Lee and Hon for testing their Hidden Markov
model recogniser (Lee and Hon, 1989). The authors are grateful to Vassilios
Digalakis and Mari Ostendorf of Boston University for their help in compiling
this list.

fdmy0* fsmm0 mrds0 msfh1 mtkd0*
fjlr0* fspm0 mree0 msfv0 mtlb0
fkdw0* fsrh0 mrfl0 msjk0 mtlc0
fmbg0 fsxa0 mrgm0 msjs1 mtmr0
fmcm0 ftaj0 mrjm0 mslb0* mtmt0
fnkl0 ftbr0 mrlj0 msmc0 mtpf0
fntb0* ftbw0 mrlr0* msmr0 mtpg0
frew0 ftlh0 mrms1 msrg0 mtpp0
frll0 futb0* mroa0 msrr0 mtrr0
fsah0 fvkb0 mrpc0 msvs0 mtwh0*
fsak0 fvmh0 mrpc1 mtaa0 mtwh1
fscn0 mbjv0* mrre0 mtab0 mvlo0
fsdj0 mdem0* mrtj0 mtas0 mwbt0
fsem0* mdlm0* mrtk0 mtat0 mwdk0
fsgf0 mdss0* mrvg0 mtbc0 mwem0
fsjg0 mejs0* mrws0 mtdb0 mwew0
fsjs0 mfwk0* mrws1 mteb0 mwjg0
fsjw0 mjee0* mrxb0 mter0 mwsh0
fskp0 mpam0* msas0 mtjm0 mzmb0
fslb1 mpfu0* mses0 mtjs0*
fsma0 mrab1 msfh0 mtju0

Table 1: Identity of speakers used in the test set

In order to compare with other techniques and databases, the 61 TIMIT

4



symbols were mapped onto a set of 50 symbols (Lee, 1989) and a set of 39
symbols (Lee and Hon, 1989). The TIMIT symbols, the reduced sets and the
IPA symbols are given in table 2 which is an adaptation of a similar table
by Seneff and Zue (Seneff and Zue, 1988; Pullum and Ladusaw, 1986). All
occurrences of the the glottal stop, q, were discounted for the 39 symbol set.

In order to demonstrate word recognition, the network was tested on
the DARPA 1000-word Resource Management database (Price et al., 1988).
All six speakers on the first CD-ROM of the speaker-dependent training
data (September 1989 release) were used for testing, with 610 sentences per
speaker, (the sb and sr sentences).

2 Preprocessor

The preprocessor used in this paper was a result of a comparison of many
preprocessors for this system (Robinson et al., 1990). Linear Predictive Cod-
ing (LPC), Fast Fourier Transform (FFT), filterbank and auditory model
techniques were compared by deriving a form of normalised power spectrum
plus a power channel for each. In the case of LPC and FFT, this power spec-
trum was also represented as a cepstrum. The addition of other features,
such as zero crossings and estimates of the pitch and formant positions and
amplitudes were also investigated. In all cases a 32ms Hamming window was
used with a frame spacing of 16ms. The conclusion was reached that most
preprocessors which were based around a power spectrum gave similar per-
formance. The simplest of these used the cube root of the powers in twenty
channels derived from the FFT. This design was arrived at by simplifying the
auditory model presented by Bladon and Lindblom (Bladon and Lindblom,
1981), and is the preprocessor used in this paper.

For practical reasons, (memory limitations on disk and in RAM), the
preprocessed data was scaled to fit into 8 bits per channel. This was done by
computing a histogram and scaling so that no more than one in 500 samples
lies outside the central 15/16th of the range. Typically this meant that one
sample in 1000 would be thresholded.

The preprocessor truncated initial and final silences longer than 160ms.
This was done to reduce size of the training data and provide a more even
distribution of symbols amongst frames.

It was also found to be advantageous to preprocess the training data with
several different offsets to better cover the variability in the windowed speech.
In a preliminary experiment, this improved the frame-by-frame recognition
rate by about 5%, as can be seen in table 3, although it should be noted that

5



TIMIT 50SET 39SET IPA TIMIT 50SET 39SET IPA

p p p p b b b p

t t t t d d d d

k k k k g g g g

pcl pcl sil po bcl bcl sil bo

tcl tcl sil do dcl dcl sil do

kcl kcl sil ko gcl gcl sil go

dx dx dx D q pau b

m m m m em em m m
hn n n n en en n n
hng ng ng 8 eng ng ng 8

hnx n n {D

s s s s sh sh sh š

z z z z zh z sh ž

ch ch ch č jh jh jh ̌

th th th S dh dh dh �

f f f f v v v v

l l l l el l l l
hr r r r w w w w

y y y y h# h# sil

pau pau sil epi epi sil

hh hh hh h hv hh hh $

eh eh eh � ih ih ih *

ao ao aa = ae ae ae æ

aa aa aa � ah ah ah �

uw uw uw u uh uh uh W

er er er � ux uw uw ü

ay ay ay �

y oy oy oy =

y

ey ey ey ey iy iy iy iy

aw aw aw �

w ow ow ow ow

ax ax ah � axr er er �

ix ix ih + ax-h ax ah �.

Table 2: The TIMIT symbol set with the two reduced sets and

IPA symbols

6



part of the increase is as a result of increasing the time constant for smooth-
ing the weight changes used in training (the “momentum” term (Rumelhart
et al., 1986)).

no. of frame-by-frame
offsets recognition rate

1 61.1%
2 64.2%
4 66.0%

Table 3: Effect of multiple offsets on frame-by-frame recognition rate

3 The Recurrent Net

A recurrent net can be considered as a sequence of error propagation networks
(Rumelhart et al., 1986) where the input and output vectors are divided into
external and internal portions. The external input vector, u0...L−1, consists
of the 21 channels from the preprocessor; and the external output vector,
y0...M−1 has 61 dimensions, one per phoneme label, and is fed to the postpro-
cessor. The internal output forms a state vector, x0...N−1, of 192 dimensions
and is fed to the same network in the next time period as shown in figure 1.

This network operates by concatenating the current external input and
the last internal output vectors to give the complete input vector at time t:

o
(t)
i =















1 for i = 0

u
(t)
i−1 for 1 ≤ i ≤ L

x
(t)
i−L−1 for L+ 1 ≤ i ≤ N + L

(1)

which is then passed forwards through the network by performing a matrix
multiplication by the weights, wij, followed by the application of a non-linear
squashing function:

x
(t+1)
i = 1

1 + exp
(

−
∑L+N

j=0 wijo
(t)
j

) for 0 ≤ i ≤ N − 1 (2)

y
(t+1)
i−N = 1

1 + exp
(

−
∑L+N

j=0 wijo
(t)
j

) for N ≤ i ≤ N +M − 1 (3)

The resulting output is compared with the desired output vector, d0...M−1,
according to a cost function. Following Hinton (Hinton, 1987), Baum and
Wilczek (Baum and Wilczek, 1988) and Solla, Levin and Fleisher (Solla

7


