
An Application of Recurrent Nets to PhoneProbability EstimationTony RobinsonTo appear in IEEE transactions on Neural Networks, Volume 5, Number3, 1994AbstractThis paper presents an application of recurrent networks for phone probability estimationin large vocabulary speech recognition. The need for e�cient exploitation of contextinformation is discussed; a role for which the recurrent net appears suitable. An overviewof early developments of recurrent nets for phone recognition is given along with the morerecent improvements which include their integration with Markov models. Recognitionresults are presented for the DARPA TIMIT and Resource Management tasks, and itis concluded that recurrent nets are competitive with traditional means for performingphone probability estimation.1 IntroductionThe aim of this paper is to describe the application of a recurrent net to phone recognition.There are several forms of recurrent net (e.g. [1, 2, 3]), however this paper is interested inthe kind that map one sequence on to another. This form of recurrent net is potentiallyvery powerful as it is capable of emulating any �nite state machine [4].Speci�cally, the aim of the network is to perform the mapping from a sequence offrames of parameterised speech to a sequence of phone labels associated with those frames.There are noticeable correlations between a speech frame and the associated label, butthere are many contextual e�ects which make the task a challenging one.This paper traces the development of one use of recurrent nets to phone recognition.It starts with an overview of the problem and a survey of the currently used techniquesthat are applied. These techniques are considered from the point of view of scaling toincorporate more contextual information and a recurrent net is proposed as a possiblesolution. An overview of recurrent net architectures is given, and one based on back-propagation through time is supported. Many details are necessary to provide a state ofthe art implementation of recurrent nets for phone probability estimation and these aredescribed in the next section along with a method for combining these probabilities toperform phone and word recognition. Finally results are presented for the TIMIT phonerecognition task and the Resource Management word recognition task and comparisonsare made with other systems. 1



2 Why use recurrent nets for speech recognition?In general, researchers are agreed that in order to cope with a large vocabulary (say greaterthan few hundred words) it is necessary to use sub-word models and a pronunciationmodel for each item in the vocabulary in order to represent every word properly. Apopular choice for the sub-word units is the phone, although diphone, triphone and syllablebased approaches are being pursued. The phoneme is a semantic category, it being thesmallest unit that is used to distinguish meaning (e.g. [5]). A phone is the acousticcategory corresponding to the phoneme. The speci�c phone that is used in any instance isdependent on contextual variables such as speaking rate. By specifying the pronunciationof a word in terms of a string of phones the task is reduced to estimating the probabilitiesof phone strings and then searching all possible phone strings for the most probable legalword string.The most popular tool for this task is the Hidden Markov Model (HMM) (e.g. [6,7]). Individual models are created for each phone and these are concatenated to formword models. Each HMM phone model can be matched to any segment of speech andthe likelihood of the model generating the observed acoustic evidence can be computed.However, there are several known problems with using HMMs as they assume that a frameof speech is generated purely as a result of occupation of a particular HMM state within aparticular phone. In practice, there are many contextual variables that a�ect the speechwaveform and which are not a function of the current state of the phone being uttered.2.1 Context in speech recognitionContext is very important in speech recognition at all levels. On a short time scale such asthe average length of a phone, limitations on the rate of change of the vocal tract cause ablurring of acoustic features which is known as coarticulation. For longer time scales thereare many slowly varying contextual variables (e.g. the degree and spectral characteristicsof background noise and channel distortion) and speaker dependent characteristics (e.g.vocal tract length, speaking rate and dialect). To achieve speech recognition at thehighest possible levels of performance means making e�cient use of all of the contextualinformation.Current HMM technology approaches the problem from two directions: top down,by considering phonetic context; and bottom up, by considering acoustic context. Theshort-term contextual inuence of coarticulation is handled by creating a model for allsu�ciently distinct phonetic contexts. This entails a trade o� between creating enoughmodels for adequate coverage and maintaining enough training examples per context sothat the parameters for each model may be robustly estimated. Clustering and smoothingtechniques can enable a reasonable compromise to be made at the expense of modelaccuracy and storage requirements (e.g. [8, 9]). However, the problem remains of thenumber of models increasing exponentially with increasing number of contextual variableswhich limits the applicability of this technique.Acoustic context is handled by increasing the dimensionality of the observation vectorto include some parameterisation of the neighbouring acoustic vectors. This changes theproblem to one of obtaining robust probability estimation from high dimensional spaces.2



2.2 Probability estimation in speech recognitionIncreasing the dimensionality of the acoustic vector increases the amount of contextualinformation available. The simplest way to do this is to replace the single frame ofparameterised speech by a vector containing several adjacent frames along with the ori-ginal central frame. However, this dimensionality expansion quickly results in di�cultyin obtaining good models of the data. For example, Gaussian distributions of acousticparameters are often assumed for each class, but for an n dimensional acoustic vector,O(n2) parameters in the covariance matrix must be estimated. This can be reduced byassuming that subsets of the acoustic vectors are independent (block diagonal covariancematrix), or that all acoustic parameters are independent (diagonal covariance matrix),but this clearly limits the modelling power available (e.g [10]).Careful choice of the method used to increase the information content of the acousticvector is clearly important. Empirically it has been shown that �rst (and second) orderdi�erences taken over a window length of a few frames are a reasonable choice for theparameterisation of acoustic context and yield substantial improvements in speech recog-nition accuracy [11]. As a result this parameterisation has been widely adopted by thespeech recognition community.Di�erence coe�cients are a simple linear function of the acoustic vectors lying within arectangular window. Automatic optimisation of the linear function may be achieved usinglinear discriminant analysis and this has also been shown to yield increased recognitionperformance [12].However, long term contextual information such as the speaker dependence of theacoustic realisation of phonemes will not be adequately modelled by a linear transform-ation to a small subspace. Methods are needed that can capture high order correlationsover long time periods. Multi-layer perceptrons (MLPs) are a suitable candidate as ithas been shown by a number of authors that when used for classi�cation these networksapproximate the posterior probability of class occupancy [13, 14, 15, 16, 17]. For a fulldiscussion of this result to speech recognition see [18, 19].2.3 Hybrid connectionist / Markov model systemsThe use of MLPs allows a large window of parameterised speech to be used directly forthe estimation of phone class probabilities [20]. Indeed, it can be seen that any lineartransformation may be built into the �rst layer of a MLP by modifying the weights beforethe non-linearity. The use of multiple layers allows the independence restrictions to berelaxed, so enabling high order correlations to be exploited. Experimenters with con-nectionist word recognition report that connectionist probability estimators yield betterresults than the equivalent HMM based on mixtures of Gaussian likelihoods [21].There are two extremes in approaches to building hybrid connectionist/HMM systems.At one end, a standard HMM can be considered as a connectionist model with as manylayers as there are frames of speech allocated to the model. Performing gradient ascentin the log likelihood of the model gives standard Maximum Likelihood trained models(e.g. [22]). At the other extreme the phone class probability estimators are trained in-dependently of the HMM transition probabilities. This is similar to Viterbi training ofHMMs in that only the most probable state sequence is used to train the emission prob-abilities from a state and has the advantage that discriminative training can be used3



(e.g. [20]). There are several intermediate positions in which gradient descent techniquescan be used for discriminative training of HMMs (e.g. [23, 24, 25]) and posterior stateoccupancy probabilities can be used as targets for connectionist training.There are also a variety of architectures worth considering for use as connectionistprobability estimators. The simplest employs a standard three layer MLP structure.Whilst this has been shown to give good results [20], at best the number of parametersto estimate varies linearly with the temporal extent of acoustic information considered.Weight sharing allows encoding of prior knowledge and gives better scaling properties atthe expense of imposing restrictions on the diversity of the computations performed [26].Along with the non-connectionist probability estimation methods, these techniques arerestricted to a �nite length window on the acoustic data.2.4 Recurrent nets for phone probability estimationThe incorporation of feedback into a MLP gives a method of e�ciently incorporatinglong term context in much the same way as an in�nite impulse response �lter can bemore e�cient than a �nite impulse response �lter in terms of storage and computationalrequirements. Duplication of resources is avoided by processing one frame of speech at atime in the context of an internal state as opposed to applying nearly the same operationto each frame in a larger window. Feedback also gives a longer context window, so it ispossible that uncertain evidence can be accumulated over many time frames in order tobuild up an accurate representation of the long term contextual variables.The rest of this paper will describe such a recurrent net used to estimate phone classprobabilities for incorporation with a Markov model word recognition system. Resultsare presented at both the phone and word levels, along with a discussion of the work thatstill needs to be done.3 Basic theoryThe form of the recurrent net used here was �rst described by the author in [27]. Thispaper took the basic equations for a linear dynamical system and replaced the linearmatrix operators with non-linear feedforward networks. After merging computations, theresulting structure is illustrated in �gure 1. The current input, u(t), is presented tothe network along with the current state, x(t). These two vectors are passed through astandard feed-forward network to give the output vector, y(t) and the next state vector,x(t+ 1).De�ning the combined input vector as z(t) and the weight matrices to the outputsand the next state as W and V respectively:z(t) = 264 1u(t)x(t) 375 (1)yi(t) = 11 + exp(�Wiz(t)) (2)xi(t+ 1) = 11 + exp(�Viz(t)) (3)4
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Figure 1: The recurrent net used for phone probability estimationThe paper proposed three structures to train the recurrent net depending on the natureof the problem and availability of storage and computational power during learning:� The �nite input duration net was so called because it is suited to learning sequencemappings of �nite duration. The structure is a minor variation on the originalrecurrent net training algorithm [4] and is now commonly called \Back-PropagationThrough Time" [28]. The training procedure is to expand the network in time, i.e.to consider the recurrent net for all time slots as a single very large network withinput and output at each time slot and shared weights over all time slots.� The in�nite input duration net was proposed to overcome the constraint of �nitelength sequences, and was also formulated independently by other researchers atabout the same time [29, 30]. This method is often called \Real-Time RecurrentLearning", but is too expensive in computation and storage for most problems.� Finally, the state compression net was constructed to make it unnecessary to keeppast outputs and also to be realistic in computational requirements. It uses amixture of unsupervised and supervised learning to form the state vector and isrelated to the simple recurrent net [31] and the principle of history compression [32].This form of net was demonstrated for small problems, but has never been testedon larger problems.Of the three algorithms, back-propagation through time was chosen as being the moste�cient in space and computation. Considering �gure 2, the training algorithm for asequence of input/output pairs of length N is:1. Set x(0) to the initial state, and u(0) from the �rst input. Forward propagate toget y(0) and x(1).2. For all t > 0, set x(t) from the previous state output and u(t) from the currentinput and forward propagate to get y(t) and x(t+ 1).5



3. Set the error on the �nal state vector to zero as the value of the objective functionis not dependent on this last state vector. Set the error vector on the last outputby comparison with the target output. Backpropagate to generate an error vectorfor x(N � 1) in the same way as backpropagation of the error to hidden units in aMLP.4. For all t starting at N�2: set the error vector on the state output to that generatedfrom t+ 1; and set the error vector on the output by comparison with the currenttarget output. Backpropagate to generate an error vector for x(t).5. Compute the gradient of the objective function by accumulating over all frames andupdate the weights.
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y(0) y(1) y(N-1)Figure 2: The expanded recurrent networkThere are a couple of common misconceptions that should be clari�ed:� The state units have no speci�c target vector. They are trained in the same way ashidden units in a feedforward network and so there is no obvious \meaning" thatcan be assigned to their values. From information storage principles all units wouldbe uncorrelated, although in practice a large degree of correlation is observed [33].� This method takes no more computation per pass than training feedforward net-works. The error vector for every output in the sequence is traced to the start ofthe sequence during the single backward pass. The superposition of error signalsfrom all target outputs is possible because the system is linear for the backwardpass. Hence one forward pass and one backward pass are su�cient to calculatethe contributions to the gradient of the objective function for all patterns in thesequence.Back-propagation through time can be easily adapted to continuous input (e.g. [28]).If the length of the bu�er, N , is much longer than the duration of the context e�ects,then good approximations can be made to both the forward activations and the backwarderror signal by ignoring context e�ects beyond the bu�er. By varying the placement of theboundary between bu�ers in the training data the e�ects of the boundary can be furtherreduced. Even if N is of the same order as the time scale of contextual changes reasonableapproximations can be made as the activations are propagated forward without regardfor the boundary. The simple recurrent network takes this to the extreme by settingN = 1 [31]. This network has been shown to work for a number of tasks but does notperform a direct minimisation of the objective function.6



4 Application considerationsThe �rst application of recurrent networks to the recognition of phones in continuousspeech was presented by the author in [34]. This section aims to detail the changes thatare necessary to this standard implementation to obtain a state-of-the-art recogniser.4.1 A large task: TIMITTheTIMIT database is the largest phonetically labelled database publically available [35].It consists of 420 speakers in the training set and 210 speakers in the test set, and eachspeaker utters ten sentences of which eight are usable for speaker independent phone re-cognition. Large speech databases are necessary for robust phone recognition in order toachieve reasonable coverage of the many possible pronunciation variations. These data-bases must also be available to other researchers in order that a meaningful comparisoncan be made between recognition systems.The data is recorded in quiet conditions and stored as 16 bit samples at 16kHz. Everysample of speech is hand labelled with a single symbol. There are 60 phone labels, plus onefor the end of sentence silence. Many researchers chose to merge some of these symbols,which is reasonable in the light of the intended application of the resulting recognitionsystem, but it makes the comparison of systems more di�cult. For that reason, the fullset of 61 labels was used for training, with an attempt made to map the test output downto the symbols sets used by others for comparison.4.2 A fast computerAll the experiments reported in this paper were run on a 65 processor array of T800transputers. One processor coordinated the weight updates while the other 64 eachtrained on an equal share of the patterns. Using back propagation through time, thisdata parallel approach was very e�cient as the communications time to collect the indi-vidual contributions to the gradient signal and redistribute the new weight vector is onlya small fraction of the total compute time.With careful coding, this machine delivers about 60 MFLOPS, which was 300 timesfaster than the workstations that were in use at the time of its construction and isstill faster than most workstations today. Large speech tasks typically have 500,000 to1,000,000 input/output pairs, 10,000 to 80,000 weights and require 16 to 64 passes thoughthe data. Training times on such tasks are typically a couple of days to one week.4.3 A fast training algorithmThe weights were updated after every bu�er of 18 frames on the 64 processors, that isafter every 1152 frames or about 1=600 of the total training set. On each update a localgradient, @E(n)=@W (n)ij , was computed from the training frames in the nth subset of thetraining data. A positive step size, �W (n)ij , was maintained for every weight, and eachweight was adjusted by this amount in the direction opposite to the local gradient.W (n+1)ij = 8<: W (n)ij +�W (n)ij if @E(n)@W (n)ij < 0W (n)ij ��W (n)ij otherwise (4)7



The local gradient was smoothed using a \momentum" term. The smoothing parameter,�(n), was automatically increased from an initial value of �(0) = 1=2 and tending to�(1) = 1� 1=N , where N is the number of weight updates per epoch.�(n) = �(1) � (�(1) � �(0))e�n=2N (5)@ ~E(n)@W (n)ij = �(n) @ ~E(n�1)@W (n�1)ij + (1 � �(n)) @E(n)@W (n)ij (6)The step size is geometrically increased by a factor � if the sign of the local gradient is inagreement with the averaged gradient, otherwise it is geometrically decreased by a factor�. Typically � = 0:9 and � = 1=� so random gradients produce little overall change.�W (n+1)ij = 8<: ��W (n)ij if @ ~E(n�1)@W (n�1)ij @E(n)@W (n)ij > 0��W (n)ij otherwise (7)In addition the step size was hard limited to a maximum of sixteen times the mean stepsize, and a minimum of a sixteenth of the mean step size. Training became unstable ifeither N or � were set too high and the best performance was obtained with N set to thesmallest value which resulted in convergence.This is similar to the method proposed by Jacobs [36] except that a stochastic gradientsignal is used and both the increase and decrease in the scaling factor is geometric (asopposed to an arithmetic increase and geometric decrease).Considerable e�ort was expended in developing this training procedure and the resultwas found to give better performance than the other methods that can be found in theliterature. A survey of \speed-up" techniques reached a similar conclusion [37]. However,the parameters quoted above are task dependent and a more robust learning scheme withfewer free parameters would be desirable.4.4 The selection of acoustic featuresThe acoustic features used in the system are fairly conventional. A Hamming window ofwidth 512 samples is applied to the speech waveform every 16ms. From this window thefollowing features are extracted: The log power; an estimate of the fundamental frequencyand degree of voicing (derived from the position and amplitude of the highest peak in theautocorrelation function); and a normalised power spectrum from an FFT grouped into20 mel scale bins.Many other acoustic features have been evaluated on this system including FFT,�lterbank and LPC based techniques [38]. The conclusion from these studies is thatrecurrent nets are reasonably robust to the choice of input representation. The inclusionof the fundamental frequency and degree of voicing do not make a large di�erence tothe performance of the system, but are included in order that natural speech may beregenerated from the parameterised representation.After the feature extraction, all channels are normalised and scaled to �t into a byteusing a monotonically increasing function such that every value is equi-probable. Forpresentation to the network, these values are expanded to a Gaussian distribution withzero mean and unit variance. This normalisation was done to reduce the storage re-quirements of the database. There is a signi�cant performance improvement using this8



compression function under limited storage conditions, but it is not clear whether thisis merely due to reducing quantisation noise, or whether the processed input is easier toclassify [39].4.5 The use of a minimum entropy objective functionOriginally the least mean squares objective function was used. The range of outputs was-1 to +1 and the target values were �0:8. This was later replaced by the cross-entropyobjective function which considers each output to be the estimator of the probability ofindependent events [40]. The latest development is to replace the set of sigmoidal outputnon-linearities with the normalised exponential or \softmax" output function [14]. This isa suitable activation function for a one-from-many classi�er as it enforces that constraintthat the estimated class probabilities should sum to one over all classes.yi(t) = exp(Wiz(t))Pj exp(Wjz(t)) (8)The current objective function is to minimise the relative entropy of the generatedprobability distribution with respect to the target distribution. There was a signi�cantdecrease in training time when the least mean squares estimator was replaced, perhapsbecause the standard least mean squares objective function is not well matched to thesigmoidal non-linearity. This is evidenced by the body of early literature dealing withthe choice of target values and the avoidance of plateaus in the objective function when asubset of patterns have maximum error and are \stuck" on the wrong side of the sigmoidand therefore contribute no corrective gradient signal (e.g [4]).4.6 Many parametersThe number of parameters in the network is limited by the storage capabilities of thehardware used to train the network as well as by the time taken to train a large numberof parameters. The current system for the TIMIT database uses 176 state units (47,400parameters). Experience with feed-forward nets for phone probability estimation suggestthat better performance is achieved by over-specifying the number of parameters (e.g.300,000 parameters) and using a cross validation set to terminate the training [21]. Thereis perhaps potential for better performance if larger recurrent networks could be trained.4.7 The use of Markov modelsThe probabilistic interpretation of the output of neural nets is perhaps the most signi�cantadvance from the point of their use in large vocabulary speech recognition [15]. In thisframework, the output from the network is regarded as the posterior probability of phoneclass occupancy given the acoustic information. The application of Bayes' rule can convertthis posterior probability into a scaled likelihood of the acoustic evidence given the phoneclass [41, 19]. This allows the values computed by the network to be used by a hiddenMarkov model in place of those normally calculated by Gaussian mixtures (e.g. [10]).For phone recognition, a very simple Markov model is used. There is one state forevery phone and all transitions between states are allowed. The value of the probability9



of staying in the same state determines the expected duration of the phone. More com-plex modelling of phone durations is possible but was found to be ine�ectual for phonerecognition, although signi�cant when a word grammar is imposed on the possible phonesequences [42]. The standard Viterbi algorithm is used to �nd the maximum likelihoodstate sequence (e.g. [7]).5 Phone Recognition ResultsThe phone sequence produced by the recogniser is scored with a standard dynamic pro-gramming string alignment which reports the number of symbols correct, the number ofsubstitutions, insertions and deletions, and the total number of errors made (substitutionsplus insertions and deletions).A comparison with other systemsmay be made if the 61 TIMIT symbols are reduced toa common set. In this section the mapping is done on the symbolic output of the recogniserand details of the mappings may be found in [39]. There may be a small advantage intraining the recogniser on fewer symbols as more training data is available for each one,but this has not been pursued. The basic results are given under the entry \rn61" intable 1 which includes all 61 symbols. The main percentages for the recurrent net in thistable are an evaluation over the whole of the test set. The numbers in parentheses arethe evaluation over the smaller \core test set" which only includes sentence prompts notused in the training set.The �rst HMM results on this task were provided by Lee and Hon [43]. This systemused multiple codebooks and right-context HMMs with 39 symbols. Recognition accuracyfor this system is shown as entry \SPHINX". Mapping the recurrent net output to anequivalent symbol set gives entry \rn39a".A state-of-the-art standard HMM system is provided by the publically available HTKsystem of Young and Woodland [44]. This implementation uses state tying to allowadequate training data to be assigned to rare contexts and is tabulated as system \htk".Kapadia et al. show that MaximumMutual Information (MMI) training of HMMs canprovide signi�cantly better results than the standard Maximum Likelihood training [45].System \mmi" uses monophone models only.Digalakis et al. provide a Stochastic Segment Model (SSM) for this task [46]. Resultsare presented for 61 and 39 symbols under the entries \ssm61" and \ssm39" respectively.Ljolje provides a single mixture Gaussian triphone based HMM with durational con-straints and trigram phonotactic constraints [47]. Although again 39 symbols are used,this subset is harder to recognise than the �rst 39 phone set due to the treatment of stops.The recognition rates for the HMM and recurrent net are given under entries \cvdhmm"and \rn39b" respectively.6 Extension to word recognitionGood phone recognition is only a �rst step towards building a complete speech recognitionsystem, although a signi�cant one. Good pronunciation models need to be built for eachword, and a good language model is needed to specify the likelihood that any word stringis acceptable in the language. 10



Model correct insertion substitution deletion total errorsssm61 60% 6% - - 46%rn61 72.8%(72.1%) 3.5%(3.4%) 20.9%(21.0%) 6.3%(6.9%) 30.7%(31.3%)sphinx 73.8% 7.7% 19.6% 6.6% 33.9%htk 76.7% - - - 27.7%mmi 74.4% 5.1% - - 30.7%ssm39 70% 6% - - 36%rn39a 78.6%(77.5%) 3.6%(3.6%) 15.0%(15.5%) 6.4%(6.9%) 25.0%(26.1%)cvdhmm 74.8% 5.4% 19.6% 5.6% 30.6%rn39b 74.3%(73.1%) 3.6%(3.4%) 18.0%(18.5%) 7.7%(8.4%) 29.2%(30.3%)Table 1: Comparison with other TIMIT phone recognisersA standard database for large vocabulary speech recognition in the last few years hasbeen the DARPA 1000 word Resource Management task [48]. The speaker independentpart of this database has 109 speakers in the augmented training set and 30 di�erentspeakers in each of four test sets. Each speaker utters 20 or 30 sentences, giving a totalof 3990 sentences in the training set and 300 sentences in each of the test sets.The quality of word recognition is dependent on both the mapping of acoustic vectorsonto phones and that of phones onto words. There are often many valid phonetic variationson the pronunciation of any word, and this paper uses a pronunciation set developed usingthe single most probable phone string for each case [49]1.A set of Markov models was created from these pronunciations and a word-pair gram-mar that is supplied with the database. The grammar has a perplexity (average branchingfactor) of 60.Unlike the TIMIT database, the Resource Management task does not come with a timealigned phonetic transcription. An estimate of this can be obtained by concatenating thetranscriptions of individual words and then aligning this phone string with the outputof the network trained on another task. Better phone boundaries can be obtained bytraining on the new alignment, and the process can be repeated. About four passes ofthis Viterbi training were necessary to produce stable phone boundaries.The recurrent net used had 256 state units and 85,400 adjustable weights. For the�rst time it was necessary to use a cross-validation set to terminate the training beforereaching the minimum of the objective function on the training set. The criterion chosenwas decrease in the number of word errors on the �rst test set (Feb 89). Results on thisand the other test sets are given in table 2.Further details on this system can be found in [50]. The results presented here showabout 10% fewer errors than those reported earlier mostly due to the use of a betterpronunciation dictionary.A comprehensive summary of the latest results on this task can be found in [51]. Theresults presented here are signi�cantly better than the best monophone HMM systemreported to date [52], although not as good as the best triphone based HMM systems.Triphone modelling allows the parameters of a phone model to depend on the two adjacent1This set of pronunciations may be found on the standard CD-ROM distribution of the ResourceManagement database as �le score/src/rdev/pcdsril.txt.11



task correct substitn deletion insertion errorsFeb89 95.7% 3.1% 1.1% 0.7% 5.0%Oct89 94.8% 3.5% 1.7% 0.6% 5.8%Feb91 95.4% 3.3% 1.4% 0.9% 5.6%Sep92 91.5% 6.4% 2.1% 1.5% 10.0%Table 2: Speaker independent results with the word-pair grammar and most probablepronunciationsphones and so gives considerable robustness to variations in pronunciation in speci�ccontexts.7 ConclusionThis paper has presented a relatively simple speech recognition system with a powerfulmechanism for incorporating acoustic context. At the phone level, this system performswell in comparison to other systems that have been applied to the TIMIT task. At theword level, the system performs as well as others which do not use phonetic context tobuild word models, and has considerably fewer parameters than the systems with bestperformance.Many further developments are possible. On the connectionist side, the trend is forincreased recognition accuracy with larger networks, but network size is currently limitedby the computational power available for training. A better understanding of the networkstates and weights could yield more compact networks and faster training. The use of priorknowledge of good weight values has been shown to yield better generalisation [53]. Manyof the ideas developed for HMM based systems are also applicable to this scheme. Forexample, the use of context dependent models has been shown to increase performance [54,55].In conclusion, this paper has shown that recurrent networks make good probabilityestimators for use in phone recognition and it is hoped that with further work these resultswill extend to word recognition.AcknowledgementsThe author would like to acknowledge the UK Science and Engineering Research Counciland ESPRIT Basic Research Action ACTS (3207) for supporting this work; the UK Alveyproject MMI 069 for the Hotel database; NIST for the TIMIT and Resource Managementdatabases; and the ParSiFal project (IKBS/146) which developed the transputer array.This work continues to be supported as part of ESPRIT project 6487, WERNICKE.Thanks to Mike Hochberg, Steve Renals, Richard Shaw, Nigel Ward and the reviewer forcomments on the manuscript and also to the many other researchers who have contributedto this work over the years. 12
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