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An Off-Line Cursive
Handwriting Recognition System

Andrew W. Senior, Member, IEEE, and Anthony J. Robinson, Member, IEEE

Abstract—This paper describes a complete system for the recognition of off-line handwriting. Preprocessing techniques are
described, including segmentation and normalization of word images to give invariance to scale, slant, slope and stroke thickness.
Representation of the image is discussed and the skeleton and stroke features used are described. A recurrent neural network is
used to estimate probabilities for the characters represented in the skeleton. The operation of the hidden Markov model that
calculates the best word in the lexicon is also described. Issues of vocabulary choice, rejection, and out-of-vocabulary word

recognition are discussed.

Index Terms—Off-line cursive handwriting recognition, optical handwritten character recognition, preprocessing, feature extraction,
recurrent neural networks, hidden Markov models, out-of-vocabulary word models.

1 INTRODUCTION
O Fr-line handwriting recognition is the automatic tran-
scription by computer of handwriting, where only the
image of the handwriting is available. Off-line handwriting
is thus distinguished from on-line handwriting, where the
path of the pen is measured by a device such as a digitizing
tablet. A host of applications of off-line handwriting can be
envisaged, including document transcription, automatic mail
routing, and machine processing of forms, checks, and faxes.

Other systems to recognize off-line handwriting have
been produced, but most are limited to digit recognition or
small vocabulary transcription problems, such as the postal
or check-reading applications where the context or addi-
tional knowledge, e.g., the zip code, limits the vocabulary
considerably [1].

The system described in this paper has been designed to
tackle the large-vocabulary task of text transcription. The
work described has been carried out on a publicly-available
database of writing from a single author. As such the envis-
aged application is for the transcription of documents by
one writer—either for personal notes, off-line data entry, or
potentially for historical document transcription. All of the
techniques used here would be applicable to a writer-
independent transcription system that could be used to tran-
scribe incoming mail, or faxes, address blocks, or checks.
Similar tasks have been attempted by other authors [2], [3].

1.1 Overview

This paper describes the operation of a complete hand-
writing recognition system intended for general text tran-
scription, from the scanning of the initial image from paper
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to the output of machine-readable text. The system can be
conveniently divided into the same broad sections of pre-
processing, recognition, and postprocessing, as are found
in most other handwriting recognition systems. The proc-
essing starts with data acquisition and proceeds in a bot-
tom-up manner, as shown in Fig. 1. Smaller amounts of
data are processed at successively higher levels of repre-
sentation to arrive at a word identity which is output in
ASCII code.

To capture data from a handwritten document, a con-
ventional flatbed scanner is used. The scanned image must
be segmented into separate words (Section 1.2), and then a
series of image-processing operations is carried out to nor-
malize the image, to make it invariant to some of the dis-
tortion processes affecting handwriting. Normalization is
described in Section 2. The subsequent section discusses the
best way of representing the useful information contained
in the image.

A recurrent neural network, described in Section 4, is
used to estimate data likelihoods for each frame of data in
the representation. The likelihoods are combined in a hid-
den Markov model (HMM) (Section 5) which finds the best
choice of word for the observed data. This system allows
the natural incorporation of prior information about the
lexicon of permitted words and about the grammar of a
language. The system also allows for the recognition of
words not in the lexicon, effectively giving an unlimited
vocabulary, and for the rejection of words where the classi-
fication is not confident. Some of the work described in this
paper has previously been published [4], [5], and for further
details, the reader is referred to the previous publications.

1.2 Image Acquisition and Corpus Choice

The system processes data captured from a flatbed scanner.
In the database collected for this research, words were
written by a single author on plain, white paper. The writer
used a black fiber-tip pen which gave clear strokes with
sharp edges, but the strokes are wide and overlap. The
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Fig. 1. A schematic of the recognition system.

sheets, each containing 150-200 words, were then scanned
at 300-dots-per-inch resolution, in 256 levels of gray to pro-
duce one file per page.

The next task is to segment each page into its component
words. The segmentation algorithm takes a simple ap-
proach, looking for the gaps between lines and words. Fig. 2
shows a section of a page of data with the automatic seg-
mentation displayed. More complex segmentation algo-
rithms are available [6], but study of segmentation is be-
yond the scope of this paper. Words for training are auto-
matically labeled by alignment with the machine-readable
file used to prompt the writer.

The database was made by transcribing part of the Lan-
caster—Oslo/Bergen (LOB) corpus [7] of modern English.
The LOB handwritten database contains images of 2,360
training words, 675 validation words, and 1,016 test words.
Initial transcriptions consisted entirely of lowercase words,
but subsequent additions to the database have included
punctuation and capital letters. The vocabulary of the tran-
scribed corpus is 1,334 words, and results quoted use this
lexicon size except where stated otherwise.'

1.3 A Note on Results

This paper presents results for a number of experiments
testing the usefulness of methods described. Since there is
usually no direct, objective measure of the effectiveness of
one method compared with another, methods are compared,
and optimal parameter values determined, by training a
complete system for each of the possible conditions and
testing on an unseen test set. The final results obtained are
word error rates showing the percentage of words in the
test-set incorrectly classified by the whole system. The
standard experimental conditions for each part of the sys-
tem are described in their appropriate sections, but some
results are presented before the whole system has been ex-
plained in detail. For comparison, since the standard test
vocabulary is 1,334 words, random guessing would give a
99.9 percent error rate, and guessing the most likely word
(“the”) all the time would give a 93.2 percent error rate. The
best result presented in the paper is a 6.6 percent error rate.
Because the training of recurrent networks is found to be
dependent on initial network conditions, results are subject
to a certain amount of variation. Where possible, several
networks have been trained under identical conditions ex-
cept for the random initial values of the weights. For these
runs, an estimate & of the mean percentage error rate and

6, the standard error of the mean are quoted.

1. The database described is publicly available by anonymous ftp: ftp:/svr-
ftp.eng.cam.ac.uk/pub/data/.

Encoded word

Recognition HMM
Recurrent = Language model
Network
Likelihoods Word
1.4 Notation

Throughout this paper, the distinction is made between a
handwritten word, and the idea of that word. To represent a
handwritten word or letter, the following font is used:
“abcdef...”; and to denote the letters or words as concepts,
this font is used: “abcdef ...”. The purpose of a recognition

system is to transcribe “words” into “wor ds”. The set {a, ..., Z}
is denoted A and an arbitrary individual letter is shown A,.

2 NORMALIZATION

The system described in this work is designed to identify a
handwritten word when presented with a scanned image.
A system could be envisaged which identified the word
directly from the image presented, but the task of the rec-
ognition system is greatly simplified by preprocessing the
image, organizing the information, and representing it in a
more compact and informative manner. The processing to
be carried out before recognition consists of two major
parts—normalization and representation. The first of these
attempts to remove some of those variations in the images
which do not affect the identity of the word, and the sec-
ond expresses the salient information in the image in a con-
cise way, suitable for processing by a pattern recognition
system.

2.1 Sources of Variation

Cursive script varies in many different ways. In addition
to the peculiarities of an author’s idioscript, which mean
that one writer can be identified among thousands, there
are the peculiarities of writing in different situations, with
different media and for different purposes. In the recog-
nition task to be solved here, all this variation is irrelevant
and serves only to obscure the identities of the words,
although in other applications, such as author verifica-
tion, this “noise” may be of most interest. One way of ac-
quiring invariance to some of these noise processes is to
identify certain parameters of the handwriting that may
vary between different instances of a word. Then, a pro-
cedure must be determined to estimate each of these pa-

e
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Fig. 2. A section of a page of the database, showing the automatically
detected bounding boxes.
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Fig. 3. Schematic of the normalization and parametrization operations.

rameter values from the sample word (or several) and,
finally, another procedure must be found to remove the
effects of the parameter from the word. The most obvious
parameters include the following:

* Height: The height of letters will vary between
authors for the same task and for a given author for
different tasks.

» Slant: The slant is the deviation of strokes from the
vertical, varying between words and between writers.

» Slope: This is the angle of the base line of a word if it
is not written horizontally.

» Stroke width: This depends on such factors as the writ-
ing instrument used, the pressure applied, and the angle
of the writing instrument, as well as the paper type.

* Rotation: If the page is skewed in the scanner, then all
the words will be rotated. In this system, rotation is
assumed to be small and is removed by a combina-
tion of slant and slope-correction transforms.

This system incorporates normalization for each of
these factors, reducing each image to one consisting of
vertical letters of uniform height on a horizontal base line
and made of one-pixel-wide strokes. Fig. 3 shows a sche-
matic of these normalization operations, which are ex-
plained below. The processes described are illustrated for
a sample word in Fig. 5.

2.2 Baseline Estimation and Slope Correction

The character height is determined by finding the intui-
tively important lines which are shown running along the
top and bottom of lowercase letters in Fig. 4—the upper
and lower baselines, respectively, with a center line be-
tween the two. With these lines, the ascenders and de-
scenders which are used by human readers in determining
word shape [8] can also be identified.

The heuristic used for baseline estimation consists of the
following steps:

1) Calculate the vertical density histogram, shown in
Fig. 4, by counting the number of black pixels in each
horizontal line in the image.

2) Reject the part of the image likely to be a hooked de-
scender, as in the letters “gqy.” Such a descender is
indicated by a peak in the vertical density histogram.
The minimum in the histogram above this point is
found and the image is cleared from that point
downwards. Even for slanted words this gives a suffi-
cient idea of the location of descenders so that slanted
baselines can be estimated by the remaining steps.

3) Find the lowest remaining pixel in each vertical scan
line.

4) Retain only the points around the minimum of each
chain of pixels.

5) Find the line of best fit through these points (Fig. 5b).

6) Reject the points far from the line of best fit and rees-
timate. This is now considered to be the baseline of
the character.

Given the estimate of the lower base line, the writing can
be straightened to make the baseline horizontal by applica-
tion of a shear transform parallel to the y axis (Fig. 5c).
Next, the height of the lower baseline can be reestimated,
under the assumption that it is now horizontal. The upper
line may be estimated using a similar procedure, though
this is less robust, because of the presence of “t” strokes,
which are harder to separate from the body of text than are
descenders.

Ascenders

Upper base line

Centre line

Lower base line

Descenders

Vertical density
histogram

Horizontal density histogram

Fig. 4. Histograms, center line, and baselines of a deslanted word.
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Fig. 5. Successive stages in the normalization.

2.3 Slant Correction

The slant of a word is estimated by finding the average an-
gle of near-vertical strokes. This is calculated by finding the
edges of strokes, either by finding the contour of the
thresholded image or by using an edge-detection filter.
Both of these techniques give a chain of connected pixels
representing the edges of strokes. The mode orientation of
those edges close to the vertical is used as an overall slant
estimate (Fig. 5d). Edge orientations are estimated with a
Canny [9] edge detector.

2.4 Smoothing and Thinning

To remove noise from the image, originating from the
original document, scanning defects, or applying shear
transforms to discrete images, it is smoothed by convolu-
tion with a 2-dimensional Gaussian filter.

After normalization and smoothing, the image is thresh-
olded to leave every pixel black or white. The threshold is
found by simply looking for a minimum between two
maxima in the gray-level histogram of the image. Next, an
iterative, erosive, thinning algorithm [10, p. 153] is applied
to reduce the strokes in the writing to a width of one pixel
so they can be followed later. This is the skeleton of the word
shown in Fig. 5f.

3 REPRESENTATION

Now that the image has been reduced to a standard form,
which highlights invariants of the words and suppresses
spurious variations, the normalized image needs to be pa-
rameterized in an appropriate manner for input to the net-
work which is to carry out the recognition process. From
the original scanned image, all that is ultimately desired is

pots

(a) Skeleton with grid

X o2 PR s N

(b) A representation of the parameterized line segment data

(c) Features superimposed on the above line segment data

Fig. 6. Successive stages in the parameterization.

the identity of the words on the page. In order to process
the data effectively with a recognition technique such as a
connectionist network, they must be reduced in number
and transformed into a form more appropriate than a gray-
scale image.” This section describes the processes used to
reduce the amount of data used to describe a word, and
deals with the problem of how the word should best be
represented.

3.1 Skeleton Coding

The main method of parameterization used is to code the
skeleton of the word so that information about the lines in
the skeleton is passed on to the recognition system.

In the skeleton coding scheme, the area covered by the
word is first divided into a grid of rectangles (Fig. 6a.) The
vertical strips (frames) are of a fixed width for the whole
word, a length determined by the height estimate of the
character. Thus, there is a variable number of these vertical
frames in a word, with long words having more frames
than short words, but a given character will always occupy
approximately the same number. Typically there are six
frames in a horizontal space as wide as the distance be-
tween the two baselines. This assumes that the character
height is proportional to the character width, which is a
valid assumption for normal handwriting by a single
author, but will not be as accurate for multiple writers. Sec-
tion 3.2 describes a technique that avoids this assumption.

The vertical resolution of the grid is chosen so that the
word is divided into seven regions, each of which can be
identified as playing a definite, but distinct role in the rep-
resentation of handwriting. The regions close to the upper
and lower baselines identified in Section 2.2 both contain
most of the horizontal movements in a word, representing
the turning points at the top and base of most small letters,
and the ligatures between letters. These two regions also
contain the endpoints of short, vertical strokes. The middle
region between these two lines captures important infor-

2. A system operating on the gray-scale image was tested [4], but was
found to work less well than the system with skeleton features.
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mation about the short, vertical strokes which make up the
majority of handwriting, as well as containing the internal
detail of the letters “¢” and “s.” The ascenders and de-
scenders are found in the regions above the half-line and
below the baseline, and two more regions can be identified
containing the endpoints or hooks of ascenders and de-
scenders. Higher vertical resolutions have been tried, but
performance was slightly lower because generalization of
the recognition system was impaired; the storage require-
ment of the networks and the training data also increased.

For each of these rectangles in the grid, four bins are al-
located to represent different line segment angles—vertical,
horizontal, and the lines 45 degrees from these. Within this
framework, the lines of the skeleton image are “coarse
coded” as follows.

The one-pixel-wide lines of the skeleton are followed,
and wherever a new box in the grid is entered, the section
in the previous box is coded according to its angle. The
box associated with this segment’s (x, y, 0) values is now
“filled” (set to one). Segments which are not perfectly
aligned with the discrete angles of the bins contribute to
the bins representing the two closest orientations. This
representation can be said to resemble the Hubel and Wi-
esel cells [11] which code information early in the visual
cortex. These are similarly tuned to a particular spatial
location and angle, but also respond to edges or bars with
similar parameters. Caesar et al. [12] and Bengio et al. [13]
use similar methods of representing off-line and on-line
cursive script, respectively. This provides the latter with a
method for coding the spatial relationships of nearby
strokes, and overcoming the problems of delayed strokes.

Fig. 6b shows the input pattern schematically. Each line
represents a full bin and its position and orientation corre-
spond roughly to the position and orientation of the section
of skeleton which gave rise to it. Because of the coarse
coding, some line segments contribute to two bins and this
is seen on the “d” ascender which is between the vertical
and 45 degrees, so both these lines are shown in the corre-
sponding boxes in Fig. 6b. Each vertical strip is referred to

as a frame of data. The tth frame of a word is denoted x;;

the 7+ 1 frames representing a whole word are written x,).

3.2 Nonuniform Quantization

The above representation codes all the frames to be of equal
width, and the frames are chosen by blindly drawing a grid
on the word image. The width of the frames is chosen in
proportion to the character height. In practice though, the
ratio of writing height to width varies from author to
author, so it would be better if these scale factors could be
estimated independently. Also, rather than blindly placing
the frames, it would be better if they could be aligned with
the data. A single frame could then contain all of a vertical
stroke, rather than strokes slightly off the vertical ending
up in two adjacent frames.

To correct these two problems, the following system has
been devised. After the word has been normalized, but be-
fore thinning, the horizontal density histogram is calculated
and smoothed. The maxima and minima of the smoothed
density histogram are found, and frame boundaries are
defined to be the midpoints between adjacent maxi-

Fig. 7. The nonuniform horizontal quantization scheme superimposed
on the histogram of the original word and its skeleton.

mum/minimum pairs. Further frames are added where the
maxima and minima are far apart, to ensure that the frames
do not exceed a certain width, chosen according to the
character height. Fig. 7 shows the centers of segments
found under this scheme. This quantization scheme is not
completely robust, as small changes in the image can lead
to different numbers of maxima and minima, despite the
smoothing, but results in better accuracy (a 17 percent re-
duction in the error rate).

3.3 Finding Handwriting Features

The previous sections have described how the original
word image can be normalized and encoded in a canonical
form so that different images of the same word are encoded
similarly. However, the coding only represents low-level
information about the word, and codes it fairly coarsely to
reduce the information burden. The performance of the
recognizer can be improved by passing it more information
about salient features in the word. A number of useful fea-
tures can be easily discerned from the processing that has
already been performed on the writing:

* Dots: Dots above the letters “i” and “j” can be identi-
fied with a simple set of rules. Short, isolated strokes
occurring on or above the half-line are marked as po-
tential dots.

* Junctions: Junctions occur where two strokes meet or
cross and are easily found in the skeleton as points
with more than two neighbors.

* Endpoints: Endpoints are points in the skeleton
with only one neighbor and mark the ends of
strokes, though some are artifacts of the skeletoni-
zation algorithm.

* Turning points: Points where a skeleton segment
changes direction from upward to downward are re-
corded as top turning points. Similarly left, right, and
bottom turning points can be found.

* Loops: Loops are found from connected-component
analysis on the smoothed image, to find areas of
background color not connected to the region sur-
rounding the word. A loop is coded by a number rep-
resenting its area.

Each of these features can be encoded by a single num-
ber. However, while it is only useful to know whether a
loop or dot is present in a particular frame, the positions of
the endpoints, turning points, and junctions are useful and
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they are recorded along with the line-segment features for
each horizontal strip. Thus, instead of four line-segment
features at each vertical position, ten features are encoded
(four line-segment angles, four turning points, junction and
endpoint), and an extra two features (loop and dot) are as-
sociated with the whole frame. With seven horizontal bands,
this increases the size of a frame from 28 bytes (7 x 4) to 72
(7 x 10 + 2), but the additional information improves the
recognition performance. Some of these features are shown
in Fig. 6¢, superimposed on the line-segment features. End-
points are indicated by “B” shapes, turning points by “<,”
and junctions by “x.”

Adding these extra features to the handwriting repre-
sentation has been found to reduce the error rate signifi-
cantly, as shown in Table 1. A further method of finding
handwriting features has been developed, based on dy-
namic contour (“snake”) fitting methods. This enables
large-scale stroke-like features to be identified in the hand-
writing. The procedure for identifying these features is de-
scribed in more detail elsewhere [4], [5].

4 RECOGNITION

The next stage in the process of deducing word identities
from handwriting is to recognize what is represented by the
frames of data created in the previous section. A variety of
pattern recognition methods is available, and many have
been used for handwriting recognition by other authors.

There are several established methods of estimating a
sequence of probabilities from a sequence of data which
have been applied in the fields of both speech and hand-
writing recognition. From the literature, two main meth-
ods emerge. Discrete or continuous hidden Markov mod-
els [14], [15] and neural network/HMM hybrids [16], [17]
have been successfully applied in speech, on-line hand-
writing, and off-line handwriting recognition. For off-line
recognition, where time information is not available, the
x-axis is generally divided up and processed left-to-right
over time. Among the neural-network approaches, feed-
forward and recurrent network approaches can be distin-
guished. The latter have been successful in speech recog-
nition [18], but have not previously been applied in
handwriting recognition.

All three methods have been investigated in this system,

as methods of estimating the data likelihoods P(xfJ |A,-)

which are used to find word likelihoods. A recurrent neural
network/HMM hybrid was found [4] to perform better
than a time-delay neural network (TDNN) [17] hybrid or a
discrete HMM. This section describes the recurrent neural
networks that were used.

4.1 Recurrent Neural Networks

This section describes the recurrent error propagation net-
work which has been used as the probability distribution
estimator for the handwriting recognition system. A recur-
rent network is well suited to the recognition of patterns,
such as speech, occurring in a time-series because the same
processing is performed on each section of the input
stream. Here the time axis is replaced by the horizontal

displacement through the word. Thus, a letter “a” can be

TABLE 1
ERROR RATES WHEN TRAINING AND TESTING NETWORKS
WITH DIFFERENT TYPES OF FEATURES

Features Error rate (%)
1] 6
Line orientation 60.4 2.7
Lines and basic features 30.1 1.2
Lines, basic features & snakes 23.1 0.9

recognized by the same process, wherever it occurs in a
word. In addition, internal “state” units are available to
encode multiframe context information so letters spread
over several frames can be recognized. The complexity and
nonlinearity of a recurrent network gives a more general
model than a pure HMM.

Recurrent networks are a type of connectionist (often
termed “neural”) network; that is to say they are composed
of a large number of simple processing units with many
interconnecting links. Each unit merely outputs a function
of the weighted sum of its inputs, but the usefulness of
such networks resides in the existence of training algo-
rithms (Section 4.2) which can, by repeated presentation of
training examples, adjust the weights to converge toward a
desired function approximation. In this case, the network is
taught to recognize letters and the functions to be approxi-

mated are letter probability distributions P(Ai ‘xé ) .

The recurrent network architecture used here is a single
layer of standard perceptrons with nonlinear activation

functions [19]. The output o; of a unit is a function of the

inputs 4; and the network parameters, which are the

weights of the links w;; with a bias b;:
o= f(le;}). 1)
o, =b+ Y aw,. )

The network is fully connected—that is, each input is con-
nected to every output. However, some of the input units
receive no external input and are connected one-to-one to
corresponding output units through a unit time-delay (Fig. 8).
The remaining input units accept one frame of parame-
trized input and the remaining output units estimate letter
probabilities for each of the character classes. The feedback
units have a standard sigmoid activation function

flo,) = (1 + e_"l’)_l,

but the character outputs have a “softmax” activation
function

o

o)==

= —.
]
Zje

During recognition (“forward propagation”), the first
frame is presented at the input and the feedback units are
initialized to activations of 0.5. The outputs are calculated
from (1) and (2), and the output letter probabilities are read
off from the outputs. In the next iteration, the outputs of the
feedback units are copied to the feedback inputs, and the
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Fig. 8. A schematic of the recurrent error propagation network. For
clarity, only some of the units and links are shown.

next frame presented to the inputs. Outputs are again calcu-
lated, and the cycle is repeated for each frame of input, with
a probability distribution being generated for each frame.

It can be shown [16, p. 118] that when the global mini-
mum of the network is reached, assuming that the network
has enough parameters and the training scheme can find
the global minimum, the network outputs will approximate

the posterior probabilities P(Ai ‘xg). It will be seen later (Sec-

tion 5) how these probabilities can be combined to obtain
word likelihood estimates in a Markov model framework.

To allow the network to assimilate context information,
several frames of data are passed through the network be-
fore the probabilities for the first frame are read off, previ-
ous output probabilities being discarded. This in-
put/output latency is maintained throughout the input
sequence with extra, empty frames of inputs being pre-
sented at the end to give probability distributions for the
last frames of true inputs. A latency of two frames has been
found to be most satisfactory in experiments to date.

Further assimilation of context information is made pos-
sible by presenting several frames of data to the network at
each time step (as in a TDNN). This gives a “sliding win-
dow” effect, highlighting short-term correlations. The effect
of this can be seen in Table 2.

4.2 Training

The network is trained using standard connectionist tech-
niques, in particular the generalized delta rule [19]. This
determines how the weights should be changed to improve
the network approximation to a set of desired target out-
puts. Since the network is recurrent, “back-propagation
through time” [18] is used, which treats the network at suc-
cessive instants as successive layers in a multilayer net-
work, with as many layers as there were frames of input.

4.3 Network Targets

For training, target values must be given, against which the
network output can be compared. This allows calculation

TABLE 2
EFFECT OF PRESENTING MORE THAN ONE FRAME
TO THE NETWORK AT EACH TIME STEP

Frames Error rate (%)
o 6

1 23.1 0.9

2 19.7 1.0

3 16.3 0.4

of the error in the outputs and thus of the weight updates.
Target values are given in the form of a label for each frame
of the training data, indicating the correct class—the class
for which the network output should be one, all others be-
ing zero. The database already has a word label associated
with each word image (Section 1.2). However, the labeling
of individual frames with the corresponding class is diffi-
cult. Unlike the segmentation problem of many other
handwriting systems, this is not the problem of determin-
ing where the test word image must be split to separate its
component letters, but that of assigning a letter label to
each of the frames of a training word. This is only for
training purposes, and need not be carried out on test
words. In new data, this frame/letter correspondence can
only be truly carried out after accurate recognition. For
some problems, such as speech recognition, hand-labeled
data has been used as an initial training set. This has been
avoided here by using a “bootstrap” scheme which derives
an approximate segmentation from a simple technique.
This segmentation is good enough to train the network to a
point where its own segmentations are more accurate.
Hand segmentation would be more accurate and would
give better results, but would be laborious and would need
to be done again for new databases.

The scheme used initially is an “equal length” scheme,
where each letter in any word is assumed (though this is
clearly inaccurate) to occupy the same number of frames of

input. Thus, in an n letter word which takes 7+ 1 frames,
the first ’T” frames are labeled with the first letter of the

word. In “noun,” for example, one quarter of the frames are
assumed to belong to each letter.

This can be made slightly more accurate by recognizing
that “w” and “m” are longer than other letters, and “i” and
“l” are shorter. Letters in these classes are given relative
lengths of three and one, respectively, compared to two for
other letters. The frames are then labeled in proportion to
the relative lengths of the letters in the word. Thus, in the
word “wig,” the first half of the frames are considered to
represent the “w,” the next sixth the “i ,” and the remaining
third the “g.” It is this segmentation that gives the targets
which the recurrent network is trained to reproduce. The
targets are set to one for the correct class and zero for all
others. These targets are only used for preliminary training,.
Reestimated targets are used to achieve greater perform-
ance. The reestimation process is described in Section 5.2.

4.4 Generalization

One problem with network training is to obtain the op-
timum solution to the trade-off between training and
generalization. This well-known problem can be seen by
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considering the problem of curve-fitting to n data
points. An (n — 1)th order polynomial can be found to
perfectly interpolate any such set, but if there is any
noise in the data, or the original points were not gener-
ated by such a polynomial, the values on the curve be-
tween will correspond badly to the values of any subse-
quently observed data points. The curve is overfitted
and generalization to the new data is poor. Similarly, in
training a recurrent network, given enough time and
computing power it should be possible to train a large
enough network to match the desired targets arbitrarily
closely. However, such a network will give poor gener-
alization and make poor predictions for inputs other
than those included in the training set.

One way of maintaining good generalization is to make
sure that the network size is right for the size of the prob-
lem. In this case, the number of parameters is kept down
and the order of the model is chosen to be appropriate to
the task to be solved (e.g., fitting a straight line to the n data
points when a linear effect is being modeled). For complex
problems, the size of the network for optimum generaliza-
tion is difficult to determine, though individual authors
have found rules-of-thumb relating the number of training
examples to the number of free parameters to be trained
[16, p. 234]. In practice, for a specific problem, trial-and-
error is often used. Methods whereby the network is grown
or pruned to the right size have also been developed.

An alternative is to use a network known to be at least
large enough for the problem, but to prevent overtraining
within that network, using a technique like weight decay or
adding noise to weights. The method used here is early-
stopping which can be implemented without changing the
training procedure and has the advantage of limiting
training according to the same performance criterion
(minimum word error rate) as will ultimately be used when
testing the network. If a network is trained on a data set, it
is found that, during training, the error rate when tested on
an independent validation set will fall as a solution is
learned and then begin to rise as generalization is impaired
by overtraining. If training is stopped at the minimum of
the validation error, optimum recognition on an independ-
ent test set will be obtained. This method has been widely
used in the neural-network community and is particularly
appropriate for large data set tasks, e.g., large-vocabulary
speech recognition [16].

To determine the best time to stop training, the training set
is partitioned into separate training and validation sets. After
training the network for a short time, the network’s perform-
ance is tested on the validation set. This train and validate
cycle is repeated every epoch until the error rate on the vali-
dation set starts to increase, indicating that the network is
starting to become overtrained. The stopping criterion is a heu-
ristic based on the observation of validation word error rate
over time. The criterion used here is to stop when the valida-
tion error rate is above the minimum observed during train-
ing for more than 12 epochs, or the same without a decrease
in the mean relative entropy. After training has been stopped,
the network with the lowest error rate is reloaded and tested
on the test set (a third set, which consists of data not previ-
ously presented to the network).

4.5 Network Size

Adding more feedback units to the network increases its
capacity, but the error rate of the system is seen to fall as
the number of feedback units is increased, as shown in
Table 3. Thus, it can be seen that early stopping ensures that
generalization does not suffer when the network size is
increased. Because of the increased training time associated
with larger networks, no network above 160 feedback units
has been trained, though it is likely that the recognition rate
would be still higher for larger networks. Elsewhere in this
work, we present results only for networks with 80 feed-
back units.

5 HIDDEN MARKOV MODELING

The neural network gives an estimate of the character pos-
terior probability given the data, P(Ai |xt) for each frame of

input x, and for each character class A;. This section deals
with the process of deriving the best word choice from a
sequence of these frame probability distributions by the use
of HMMs. For the time being, the system is assumed to
have a known vocabulary, and it is assumed that any word
presented to it will be in that vocabulary.

5.1 A Basic Hidden Markov Model

Because the data are noisy or ambiguous, the output of the
whole system should be a probability distribution across
the words in the lexicon, being the probability for any word
that it was the one represented by the data. Normally, the
probability should be close to one for one word and close to
zero for the others, but where there is ambiguity, error, or
poor data, the distribution might be more uniform. For in-
stance, the cursively written word “day” may also be read
“cl ay,” so a good recognition system should return high
probabilities for both and much smaller probabilities for
dissimilar words. The probability distribution to be deter-

mined is P(W ‘xg) across all words W in the lexicon £, given

the input data x;.

The individual frame probabilities are combined to pro-
duce word probabilities using an HMM [20]. A separate
HMM is created for each word in the known lexicon, with
one state representing each letter. Fig. 9 shows a model for
the word “one.” If there are N states, the set of states is

Q=1q,:v=0, .., N -1}, corresponding to the letters L(g,).
The Markov model represents a process by which the

TABLE 3
THE EFFECT ON ERROR RATE OF CHANGING THE
NUMBER OF FEEDBACK UNITS IN THE NETWORK
(ONE FRAME OF INPUT AT EACH TIME STEP)

Number of Error rate (%)
feedback units o 6
0 29.8 0.6
10 25.1 0.6
20 26.8 34
40 24.5 2.5
80 23.1 0.9
160 18.5 3.3
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o (t) o, (t) e (£) % one(t)

Fig. 9. A simple Markov model for the word “one” with one state per letter.

writing could have been generated. Each circle in the dia-
gram represents a state of the model. At time ¢ = 0, the

model is in state g,, corresponding to the beginning of the

word. At each time step t = 0, ..., 7, a state transition is
made, following one of the arrows in the diagram. This
means that either the next state is entered, or a self-
transition is made and the state at the subsequent time step
is the same as the current state. The state at time t is written

S,. In general, an HMM can allow transitions between any
pair of states, but in handwriting, the order of the letters is
known, so the model is restricted to allow only the two tran-
sitions shown in Fig. 9. To use the model, transition prob-
abilities, assumed to be independent of the time, are as-
signed to each of the permitted transitions:

ap,r = P(St+l = qr St = qp )' ap,r = 0

except when r = p or v = p + 1. For the model to be a true
Markov model, the transition probabilities are dependent
only on the current state. By this process, a state sequence
S =(Sy, ..., Sy is arrived at, which records the state at each
time step. A typical state sequence might be

5 = o 90 Go Gor T T1s G1r G2 T2r G G2 1)
corresponding to frames representing the letters
L(S)=(0,0,0,0,n,1n,1, €€ €€ e).

The model is a hidden Markov model because S is not di-
rectly observable, only inferred.

In the generation process which is to be modeled, the
system produces a frame of handwriting data x, at each
time step. The data are part of the representation of the let-
ter signified by the current state. The data are assumed to
occur according to a probability distribution P(x, |L(St)).
With this information, an expression can be derived for the
probability of a word, given a particular observation se-
quence x;.

The posterior probability of a word W can be rewritten
using Bayes’s rule, deriving the denominator from the fact
that the word must be in the vocabulary:

- P(x§ [W)P(W)
Yy P(xSIW)PON)

P(w X

®)

Summing over all state sequences, S, representing the
word W,

PlxaW) = P(xg[s)P(s), @

SeS(W)

where, according to the Markov model, the state sequence
probability, P(S), is the product of the initial distribution,
7, = P(S,= q,), and the subsequent transition probabilities:

1-1
P(S) = 75, I a5 - (5)
t=0

Here, 7, = 0 for all states except the first (7, = 1), so each
state sequence is constrained to start with the first letter of a
word. Expanding the other term in (4),

P(xg |S) = P(xO |S)g P(xt

If it is assumed that the emission probability is condition-
ally independent of preceding or following states, given the
current state, and indeed is dependent only on the letter
that state represents, this reduces to

7
P(x;I8) = [T P(x L5 x7). @)
t=0
By applications of Bayes’s rule, it can be seen that:

i PLs) xg )P(x
)

Now, P(L(St)‘xg) is the posterior character probability es-

S, xf)_]) . (6)

®)

timated by the recurrent network, with dependence on the
observation history ngl. P(xg) is the probability of the first
few frames of data, which is the same for all words.

P(L(St), ngl) is assumed to be approximately proportional

to P(L(S,)), the prior probability of a frame belonging to the

class L(S;). This probability can be estimated by counting
the number of frames in each class according to the labels
of the training set.

Thus, the probability P(xg |W) of the data given a word

can be calculated to within a constant K(xg) which does not

depend on W and normalized with the word prior, to give
posterior word probabilities:

. P(L(St)‘xg)\

Lt ) = K3 HWJ (nHJ o)

S t=0
P(W)L(x; W)

PWxy) = ———— . 10
() = POV )L(x} W) 1o
These calculations can be performed efficiently by recur-
sive evaluation of intermediate, “forward” probabilities.
Each state is accorded a probability o (t), which is the prob-
ability of being in state r after t frames have been observed.
Thus, ¢,(0) = 7, the initial distribution. As successive frames
of data are fed into the recognizer and character probabili-
ties are generated, the Markov model forward probabilities
are calculated recursively by the formula:

P(L(S,)[x}
o, (t+1) = Zap(t)((—t)‘xo)ap,r

2505 o
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until all have been processed. At this point, the final state
(dashed in Fig. 9) contains «, (7 +1) = L(xg |W), the likeli-
hood that the data x; represented the word of this model.
The maximum likelihood word, arg max,, P(W)L(xfJ |W) , is

returned as the recognition result.

In practice, most of the state sequences S are improbable,
contributing little to the probability of the word, and there will
be a small number of similar state sequences which are much
more likely than all the others. The single most likely sequence,
S*, will be similar to all of these and can be considered to be
representative. Thus, a good approximation to (4) is:

P(x W) < P(xg[s")p(s"). (12)
Taking only the most likely state sequence when decoding
is called Viterbi decoding. In this case, decoding is simpler
and faster; a different set of likelihoods, ¢, is stored:

o (¢ +1) = max o, (OP(x,|L(g,))a,,.  (13)

5.2 Targets

Using the o(t), it is possible to calculate a probability dis-
tribution across the states of the model for each frame—an
average of all the state sequences. This is, in effect, a label,
describing which state the frame belongs to, but it is a soft
label, reflecting the ambiguity of some frames which are
unclear, contain no information, or actually contain parts of
more than one character. Nevertheless, this soft label can be
used as a target for the recurrent network and enables the
iterative retraining of the hybrid system toward progres-
sively better targets [21].

5.3 Multistate Letter Models

It will be seen that the above model, with only one state per
letter, loses much of the discrimination necessary to distin-
guish between characters because the model is not at-
tempting to discriminate between the different parts of a
character, but only determine to which character a frame
belongs. Thus, a set of frames fed into the model would
give the same probability regardless of the order (except for
the context-assimilation methods described before). In-
stead, if each letter is now considered as the horizontal con-
catenation of two or more letter parts, the network can be
trained to estimate probabilities for each of these letter
parts for every frame, and each letter in the HMM can be
represented by one state for each letter part. This has two
beneficial effects. First, the network no longer has to associ-
ate the same class output with such dissimilar frames as,
say, the left and right halves of a “d,” and, second, a time
ordering is forced upon these frames, increasing the differ-
ence between “d” and “b,” say. The results of Table 4 dem-
onstrate the reduced error given by this improvement.

5.4 Rejection

In many applications, there may be a high cost associated
with misrecognizing a word, and an alternative to machine
recognition may be available. In these cases, we would like
the system to be able to identify which words have been
well recognized, where the answer can be trusted. Poorly

TABLE 4
A COMPARISON OF ERROR RATES FOR
HYBRIDS BREAKING EACH LETTER INTO
A NUMBER OF SEPARATELY RECOGNIZED PARTS
(3 FRAMES PRESENTED AT EACH TIME STEP)

Number of Error rate (%)
parts per letter i} 6
1 16.3 0.4
2 10.7 0.5
3 9.8 14
8 . . . T T
7L |
6l |
R 5S¢ ]
2
S 4 1
S
w 3} .
ol |
1L |
0 | . . | |
0 5 10 15 20 25 30

Rejection rate %

Fig. 10. Error against rejection proportion for thresholding on difference
in normalized log likelihood.

recognized words could be dealt with in a different way.
Thus, in a document transcription system, the user may be
prompted to review the words whose classification was
uncertain, or in a postal sorting application, the error rate
could be reduced to an acceptable value by having all un-
clear addresses sent to human sorters.

In this system, words are rejected on the basis of the
likelihood ratio between the top two words. If these likeli-
hoods are similar, small perturbations of the input could
reverse the ranking, showing that the classification is not
certain. Thus, if the log likelihoods (divided by the number
of frames in the word for normalization) of the top two
words are closer than some threshold, the classification is
rejected as uncertain. By varying the threshold chosen, the
error rate can be traded off against the rejection rate, as
shown in Fig. 10. An error rate of 1 percent can be achieved
when rejecting 15.5 percent of the words (high threshold) or
5.2 percent when rejecting 5.0 percent (moderate threshold).

6 LANGUAGE MODELING

One area where great gains in recognition accuracy can be
made is by modeling the structure of the language being
processed [22, ch. 8]. The system as described so far has a
language model built in in the form of a fixed lexicon
which limits the search to a set of permitted words. This
section investigates the choice of vocabulary, and tech-
niques to improve performance and to recognize words not
in the vocabulary.
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Fig. 11. A graph of error rates for different lexicon sizes with full cover-
age, for a sample network.

6.1 Vocabulary Choice

The lexicon used so far was chosen to be the union vo-
cabulary of the training, test, and validation sets, so that
any word in the corpus would be in the lexicon. In any ap-
plication, the lexicon is dictated by the task. For instance,
when reading checks, the vocabulary would be around 35
words, comprising numbers, currency units, “and,” and so
forth. When transcribing longhand documents, the vo-
cabulary would need to be tens of thousands of words to
cover all the words likely to occur. The size of the vocabu-
lary affects the performance of any recognition system be-
cause when it is large, words similar to the correct word are
more likely to be permitted. For instance, in a check appli-
cation, the word “hundr ed” is unlike all the other words,
but “hounded” might be necessary in a large vocabulary
system, increasing the likelihood of confusion.

In postal applications, the potential vocabulary is large,
containing all street, city, county, and country names.
However, the main reason for using cursive script in ad-
dress reading is to disambiguate confusions in reading the
zip code. If the zip code is reliably read, the city will be
known, but if one or more digits are uncertain, the vo-
cabulary will reflect this uncertainty and increase to in-
clude other city names with zip codes that match the dig-
its that were reliably read. A postal system can reasonably
be tested with a few hundred words, the vocabulary for
each word being dynamically chosen from a longer list by
zip code. It should also be noted that the resulting vo-
cabularies consist of longer, less-confusable words than
vocabularies of similar size designed for transcribing
more general texts.

Experiments were conducted to test the effect of lexicon
size on error rate. Fig. 11 shows the results of these experi-
ments. The lexica are created by taking the vocabulary of
the test set (447) and adding to that the most frequent
words from the LOB corpus that were not already included.
(The most frequent words tend to be short and, thus, most
easily confusable.) Thus, each of these lexica fully covers the
test set vocabulary, cf. Section 6.2. This experiment is simi-
lar to one described by Schenkel et al. [17], who supple-
ment the test-set lexicon with randomly chosen words. The
500-word error rate is lower than those quoted earlier be-
cause of the smaller lexicon size, but larger lexica give more

TABLE 5
COVERAGE RATES FOR LEXICA COMPOSED OF THE N MOST
FREQUENT WoORDS FrROM THE LOB CoRPUS, ON THE LOB
CORPUS AS AWHOLE, OR ON THE LOB TEST SET

Lexicon | Coverage (%) Error rate (%)
size n LOB Test Test set | Inlexicon
3 9.9 13.1 86.9 0.0
10 15.5 23.4 775 3.8
30 28.4 36.0 65.8 4.9
100 44.6 50.4 55.0 9.8
300 58.6 60.4 44.6 8.3
1,000 72.6 725 34.1 9.1
3,000 86.6 85.6 22.0 9.9
10,000 93.8 94.2 16.1 11.0
30,000 99.0 99.3 87.7 11.7

Error rates for a testing network are shown as percentages of words in the test
set and of those test set words in the lexicon.

errors because of the increase in similarity between the
permitted words.

6.2 Coverage and Out-of-Vocabulary Words

In most applications, there is a chance that the recognizer
will be asked to identify a word that is not in the lexicon.
Thus, a system must be able to recognize words not in the
vocabulary (as described in the next section), flag that there
was an out-of-vocabulary word for human proofreading
using a rejection criterion as above, or be condemned to
incorrectly classify these nonwords.

In the case where out-of-vocabulary words are not errors
and the system should be able to identify them, the vo-
cabulary is termed “open,” in contrast to the “closed” vo-
cabulary task assumed above. For an open vocabulary task,
the issue of coverage must be addressed—the proportion of
words in a text which are in a recognizer’s lexicon. If there
is no method of recognizing out-of-vocabulary words, then
this figure is an upper bound on the proportion of words
that the recognizer can classify correctly. Some sample cov-
erages for the LOB corpus with lexica of different sizes are
shown in Table 5 and Fig. 14. In each case, the lexicon is
made of the n most frequent words from the LOB corpus
and, thus, no longer contains all the words in the test set.
The coverage proportions are compared with the perform-
ance of an 80-unit network.

These results are shown by the solid line in Fig. 14. It can
be seen that, as the lexicon size increases, the recognition rate
increases, though it does not rise as fast as the test set cover-
age rate which is the optimal performance. As a measure of
how well the system is performing compared to this upper
bound, the in-lexicon error rate is also shown in Table 5. This
is the proportion of in-vocabulary words—those words that
the system could have correctly identified given the lexicon—
which are misclassified. This rises from 0 percent with three
words, since all words “t he,” “of ,” and “and” are correctly
classified, to 11.7 precent with a 30,000 word vocabulary.

If the vocabulary is not inherently limited by the task, in
which case an out of vocabulary word is an error, the sys-
tem should be able to detect that the word is poorly recog-
nized and, if possible, should then use an alternative strat-
egy to recognize the word.
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Fig. 12. A nonword Markov model showing the connections between

some of the 26-letter models.

ERROR RATES FOR THE NONWORD MODEL
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TABLE 6

Bigram

Error rate (%)

No
Yes

49.7
41.1

One such strategy is to create a nonword Markov model,
as shown in Fig. 12. Each circle represents a letter model,
with one or more states. The initial distribution 7 is uni-
form across the first states of each letter model. The prob-
abilities are combined to find the o/ probabilities as before,
but after each letter is complete, a transition to any of the
letters is permitted. As the data are accumulated, a path is
traced between successive letters.

When the final frame is processed, the most likely path
is found by the Viterbi algorithm and the letters corre-
sponding to its state sequence can be printed out. A letter
bigram can be created, detailing the probability of making a
transition from one letter to another, as observed on a cor-
pus of text by counting how often each possible pair of ad-
jacent letters occurs. These probabilities can be multiplied
in to the state sequence probability, biassing the answers
toward word-like strings of characters. Table 6 shows the
recognition rates for the nonword model when it is used
instead of a lexicon. These results compare favorably with
the single-author nonword error rates of 78 precent to 92
percent of Edelman et al. [2].

A system has been created which uses both the lexicon
and the nonword model, finding the most likely word in
the lexicon and the most likely letter string, respectively.
The problem then is to decide which of these hypotheses to
choose. It has been found that the normalized likelihood
used as a rejection criterion gives a good measure of sepa-
ration. Fig. 13 shows the normalized likelihoods from the
word and nonword models plotted for words classified
according to whether they were correctly or incorrectly
classified by each model. It is necessary to discriminate
between the two outcomes where one model is right and
the other wrong. If both are right or both wrong, the deci-
sion is immaterial. A straight-line decision boundary sepa-
rates the two cases well and corresponds to a nonword
penalty of 0.22.

Fig. 14 shows the error rates when using this decision
boundary. The error rates are compared to the coverage and
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V model correct +
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Fig. 13. Words recognized either by 300-word lexicon or nonword
model plotted with nonword normalized likelihood against lexicon nor-
malized likelihood.
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Fig. 14. A graph of recognition rate against lexicon size, with and with-
out modeling out-of-vocabulary words. The test set coverage of the
lexica is also shown.

the error rate using only the lexicon. This time the recogni-
tion rate is higher than the coverage for small lexica,
showing the power of the nonword model for recognizing
out-of-vocabulary words. As the lexicon size increases and
the coverage rises toward 100 percent, the advantage of
using the out-of-vocabulary model becomes less significant
but the recognition rate remains above the lexicon-only
recognition rate until 30,000 words (87 percent).

7 CONCLUSIONS

This paper has described a complete handwriting recogni-
tion system which has been implemented and tested on a
database of cursive script. The results show that the
method of recurrent error propagation networks can be
applied successfully to the task of off-line cursive script
recognition. An 87 percent recognition rate has been
achieved on an open-vocabulary task. Comparison of re-
sults with other researchers is difficult because of differ-
ences in experimental details, the actual handwriting used
and the method of data collection. Single author error rates
for other systems include (for various lexicon sizes): 52 per-
cent [23], 50 percent [2], and 30 percent [3].
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Enhancements in normalization and in the detection
and representation of features have led to reduced error
rates. A hybrid system using recurrent neural networks
and HMMs was found to perform better than a discrete
probability HMM system or a TDNN system. The system
performance was increased by allowing more frames of
context in the network inputs and by “untying” the out-
put distributions, to distinguish between the different
parts of each character.

The error rate has been reduced to 9.8 percent. (Aver-
aged over four 80-unit networks. An error rate of 6.6 per-
cent has been achieved with a 160-unit network.) It has
been shown that the system can recognize 59 percent of
words without any use of a lexicon, and that a model for
words not in the system’s vocabulary can increase the rec-
ognition rate beyond that otherwise obtained. Lower error
rates can be achieved by the use of rejection criteria.

Further recognition rate improvements could be ex-
pected from techniques such as context-dependent model-
ing which have benefitted a similar recurrent-network hy-
brid speech recognition system [24]. A larger training set
would also bring a slight improvement because there is still
a gap between training and test-set performance. The use of
probabilistic grammars, not discussed here, has also been
found to give better results.
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