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Abstract

In this report system identification techniques are applied to speech. The purpose is
to compare different models and different parameter estimation techniques on both
a theoretical and an empirical basis. Results are then used in the practical problem
of speech enhancement in additive white Gaussian noise.

Two model families are identified: polynomial and state space models. These
are compared within a common state space framework, which makes explicit the
assumptions and constraints of different models regarding process noise, observation
noise, input-output delays and initial conditions. State space models are then cast
in block matrix form because this representation is used in subspace state space sys-
tem identification (4SID) methods. Next, three common parameter estimation tech-
niques are compared: prediction error minimisation (PEM), instrumental variables
(IV) and 4SID. These models and parameter estimation techniques are compared
through experiments on real clean and noisy speech data, and evaluated in terms of
their prediction errors, spectrograms and perceptual quality of the one-step-ahead
predicted waveform. Finally, the best models are used to initialise Kalman filters
which are used to filter noisy speech (where noise is white, additive and Gaussian)
in the speech enhancement problem.

In general, the results are that modelling accuracy is improved by using the
glottal waveform, a more general noise model and non-zero initial conditions. This
is evident by reduced model prediction errors and better noise model spectrograms.
Voiced speech can be more accurately modelled than non-voiced speech. Regarding
parameter estimation techniques, PEM gives smallest prediction errors, then 4SID
then IV. 4SID methods have advantages, for example the one-step-ahead predicted
waveform does not seem to suffer from musical noise like PEM methods. Other
advantages include numerical stability and the use of a frequency-weighted balanced
state space basis, which allows model order to be reduced in a simpler and better
manner. In addition, PEM and 4SID weight modelling errors differently in the
frequency domain. PEM, 4SID and IV methods can be used to initialise a Kalman
filter, which can be applied to speech enhancement.
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1 Introduction

The aim of this report is to model the speech process. Although speech is generally
non-stationary, its properties change slowly with time. Speech can therefore be
divided into short frames during which the speech is essentially stationary. This
report models each frame as a discrete time linear time-invariant (LTI) dynamical
system. A system identification approach is adopted throughout.

1.1 System Identification

System identification is the process of inferring models of dynamical systems from
observed data. A model is a mathematical description which relates variables. A
dynamical system is where output depends on both the present and past history of
inputs. System identification can be placed within a probabilistic or heuristic frame-
work. System identification methods are well discussed by Ljung [21], S6derstrom
and Stoica [30], and Heiji [13]. Juang [15] presents a more interdisciplinary ap-
proach. System identification consists of 3 stages which are often iterated until the
selected model is sufficiently valid. These stages are described below and the system
identification procedure is illustrated in figure 1.

1. Specification. This includes the design of the experiment, the selection of a
model set and the selection of a criterion of fit for parameter estimation.

2. Identification. This includes the determination of the model which best de-
scribes the data given the criterion of fit, and the estimation of its parameters.

3. Validation. The validity of the model is tested.

SPECIFICATION IDENTIFICATION { VALIDATION

Select mode! set Yes
(physica grey box, Identify model Validate model .
black box)
Select criterion No
of fit

H

Figure 1: Procedure for sstem identification

This report has two principal aims. Firstly, different model sets are investigated.
Secondly, different parameter estimation techniques are investigated. Model set
selection is critical in system identification. The choice of a poor model can lead to
poor model accuracy regardless of the quality of the parameter estimation algorithm.
A priori information can aid model set selection; generally the more information the
better.



There are three general categories of models.

e Physical models. These are constructed using the physical equations which
underly the phenomenon, and require much a priori knowledge. They are
generally constructed from first principles and are not data-derived.

e Grey box models are data-derived input-output mappings, where the equa-
tions have no particular physical meaning, but the parameters do.

¢ Black box models are data-derived input-output mappings, where param-
eters and equations have no particular physical meaning but simply aim to
reconstruct the mapping as faithfully as possible.

The selection of a model set involves important questions such as whether the
process is linear or non-linear, stationary or non-stationary, deterministic, stochastic
or combined deterministic-stochastic. Deterministic models assume that the noise is
not significant and that variables are observable and satisfy noise-free relationships.
Stochastic models assume that noise is significant. Differences between determin-
istic and stochastic models can be introduced in two ways: either in the variables
(the errors-in-variables approach), or in the equations which link the variables (the
errors-in-equations approach).

For deterministic systems, the aim may be to model the system exactly or to
obtain an approximation of the exact model. For stochastic systems, the aim is to
obtain an approximate model. Approximation is necessary because the phenomenon
may be complex and only partly known, or all explanatory variables may not be
known. Model approximation may require the definition of measures of model
complexity and distances between models. Differences between the identified and
true models are due to modelling errors and disturbances.

This report concerns the modelling of the speech process. It is helpful to under-
stand the physics of speech production and speech perception [3, 8, 24, 25]. Speech
is a non-linear process which slowly varies with time. Both deterministic glottal
waveform input and random noise drive the speech process. Deterministic input
dominates during voiced speech, whereas random noise dominates during unvoiced
speech. Therefore speech is a complicated natural process, and it is likely that at
best only an approximate model can be derived. The approximation usually made
is that speech is short-term stationary and linear. In this report experiments are
conducted by dividing speech into short frames, and then modelling each frame
as a linear time-invariant (LTI) dynamical system. A variety of stochastic, deter-
ministic and combined deterministic-stochastic models are investigated which are
principally black-box in nature. However the estimated parameters can often be
understood in terms of the physics of the speech production process. Non-linear
and non-stationary models are not included in the scope of this report.

1.2 The General Discrete Time LTI Model

A parametric linear time-invariant model can be represented by

y(t) = G(g,0)u(t) + H(g,0)e(t) (1)
fe(z,0) is the PDF of e(t)
{e(t)} is white noise
{u(t),y(t)} are system input-output pairs, e(t) is termed the innovation or 1-step

ahead prediction error, fe(z, ) is the probability density function of the innovations
process, and 0 is a vector of model parameters to be estimated. qu(t) = u(t + 1)



and ¢ 'u(t) = u(t — 1) are the time-domain forward and backward shift operators
respectivelyl. G(q,6) and H(q, ) are termed the transfer function and noise model
respectively.

G(Qae) = El?;lg(kae)q_k (2)
H(qag) = 1+El?;1h(k70)q_k (3)

Equation 1 is a probabilistic model which requires the definition of H, G and f.(.).
H and G are often assumed to be of finite length, and f. is often assumed Gaussian
and therefore described fully in terms of its first and second moments. With some
manipulation, equation 1 can be written as

g(tle) = H™'(q,0)G(q,0)ult) +[1 - H '(q,6)]y(t) (4)

where §(¢|0) is the one-step ahead predictor. Equation 4 is termed the predictor
model which does not require a probabilistic description of the innovations process.
In fact it can be derived from a non-probabilistic approach. This predictor model
can often be written in pseudolinear regression form

6T (t,0)
¢" (t,0)0 (5)

where @ is a vector of parameters, such as the coefficients of the transfer function and
noise model, and ¢(t, ) is a pseudo-regression vector containing ordered sequences
of relevant past data, partly reconstructed using the current model. The exact form
of the vectors depends on the type of transfer function and noise model used. If
@(t,0) does not depend on 6, then the relationship becomes linear regression, and
@(t) is termed the regression vector. Ljung [21] explains all these further.

9(t10)

1.3 Report Overview

The report investigates different discrete time dynamical models for the speech pro-
cess and their assumptions regarding process noise, observation noise, deterministic
input and non-zero initial conditions. Different parameter estimation techniques
are then compared. Experiments are conducted on voiced and non-voiced speech,
in both clean and noisy conditions, using various models and parameter estimation
techniques.

The report is divided as follows. Sections 2 and 3 introduce the theory. The
LTI dynamical system is introduced and then described in two representations:
the polynomial and the state space representation. These are contrasted and com-
pared. The state space representation is then extended to block matrix form. After
this three parameter estimation algorithms are discussed: PEM (prediction error
minimisation) , IV (instrumental variables) and 4SID (subspace state space system
identification). Section 4 describes the tests used to validate a model and determine
its modelling accuracy. Sections 5 and 6 describe and discuss the experiments on
real speech, present results in tabular and graphical forms, and then apply these
to the speech enhancement problem. Finally guidelines for future research and
conclusions are made.

LIf equations are written in the z-domain, then the forward shift operator would commonly be
defined using the symbol z instead of ¢, giving zu(t) = u(t + 1). However in this report interest
in focussed on time-domain rather than z-domain relationships. This difference is emphasised by
using the symbol ¢ instead, and the time-domain forward shift operator is defined as qu(t) =
u(t+1). Strictly speaking, the term transfer function should be reserved for z-domain transforms
only eg H(z). However for convenience the same terminology is used for the time-domain term
H(q) also. The corresponding frequency response is H(e/?) in both cases.



2 Model Set Selection

In this section, two general model families are presented and contrasted. These are
termed the polynomial and state space families. Further explanation is given by
Ljung [21].

2.1 The Polynomial Model Family

The most general polynomial description of the discrete time LTI model is

) e(t) (6)

For most practical purposes, this structure is too general and one or several of the
polynomials are often fixed to zero or unity. Polynomials are described in long-hand
and short-hand notation as

Ag) = 1+ Yragt = [La,...,a,,]
B(q) = b0+ Zz‘n:bl bzq—z = [b07 b17 sy bnb]
Cle) = 1+ Yi=cq’ = [Le.-ohen,]
D(g) = 14+ Y dig™ = [1,di,...,dn,]
Flg = 1+ Y fie™ = [,y fal

A non-zero by implies that there is a zero-sample delay between input and output.
In many cases of polynomial modelling, there is at least a unit-sample delay which
means by = 0.

2.2 The State Space Model Family

A second method to represent a discrete time LTI dynamical systems is to use the
state space representation [16, 21, 28]. State space systems are defined in terms of
a pair of equations.

z(t+1) = Az(t) +Bu(t) +w(t) (7)
y(t) = Cz(t) + Du(t) + v(t) (8)

z(t) € RPX1, A € RP*?, B € RP*!, C € R*?, D € R and p is the order of the
system. v(t) € R1*! and w(t) € RPX! are noises. They are assumed zero-mean and
temporally white. They are independent of each other, the states and the outputs.

Equation 7 is termed the state transition equation. The states z(t) evolve ac-
cording to a first-order Markov process with a deterministic input and corrupted by
process noise. Equation 8 is the observation or measurement equation. Observations
y(t) are linear combinations of the states and deterministic input and corrupted by
observation or measurement noise. Although the states z(t) can be considered as
the underlying causes of the process, these are hidden from the observer. Only the
outputs y(t) are observed. If the noises are assumed spatially Gaussian distributed
such that w(t) ~ N(0,Q) and v(t) ~ N(0,R), then the system is termed a Gaussian
dynamical system. Covariances are defined as R € R'*! and Q € RP*P,

The noise processes are essential elements of the model. Without observation
noise, the states would no longer be hidden but be related linearly to the input and
output. Without process noise and in the absence of deterministic input, the state
z(t) would either decay to zero, or increase to infinity in an exponential manner in
the direction of the leading eigenvector of A.



This state space representation can be more readily analysed if it is represented
in the forward innovations form. Matrices are now defined in terms of a vector of
parameters 6.

z(t+1) = A@0)z(t) + B(O)u(t) + K(0)e(t) 9)

y(t) = C(0)z(t) + D(0)u(t) + e(t) (10)

e(t) € R'*! is termed the innovation and K(#) € R?*! is termed the Kalman gain.
So called because the Kalman filter operates on this state space representation to

optimally predict z(t) and y(¢). Using the g-shift operator, these equations can be
written as

y(t) = {C(O)lgI—A(6)] "B(6) + D(6) }u(t)
+{C(0)[qL - A(6)] 'K (6) +I}e(t) (11)
Comparing this with equation 1, the transfer function and noise model are written

as

G(g,0) = C(0)[aI - A(6)]"'B(6) + D(0) (12)
H(q,0) C(O)lqI — A(0)] 'K () +1 (13)

2.3 Polynomial Models in State Space Form

Generally it is difficult to directly compare polynomial models with state space
models because of their different representations. Moreover, state space models
separate noise into process and observation noises, whereas polynomial models do
not separate noise explicitly in such a manner. In this section the relationship be-
tween these two representations is investigated by converting state space models
into some well-known polynomial models. Special notice is taken of the manner
in which polynomial models consider observation and process noises and the con-
straints which they apply to state space system matrices. The polynomial models
considered in this section are listed in table 1. Polynomial models are identified by
acronyms. ARMAX means autoregressive moving average with exogenous inputs,
ARX means autoregressive with exogenous inputs, OE means output-error, ARMA
means autoregressive moving average, and AR means autoregressive.

Model Equations

ARMAX | A(g)y(t) = B(qu(t) +C(g)e(t)
ARX Algy(t) = B(gu(t) +e(t)

OE F(q)y(t) = B(gu(t) +F(qge(t)
ARMA | A(q)y(t) = +C(q)e(t)
AR Alg)y(t) = +e(t)

Table 1: Common polynomial models

The conversion from state space to polynomial model is achieved by using the
companion parametrisation (or observer canonical parametrisation) of the state
space model as described in [16, 21]. Consider the state space system in forward
innovations form with matrices defined in companion parametrisation as below. The
0 dependence is dropped for convenience.



y(t) = C(0)z(t) + D(O)u(t) + e(t)
—ax 1 0 0 kl
—as 0 1 0 kz
A(6) = Do o| KO=| :
—ap—1 0 1 kp—1
—-ap, 0 0 kp
z1(t+1) b1
2(t+1) b
z(t) = : c B(6) =
zp(t +1) by
C@ = [1 0 ... 0]
D) = [bo]

[al,ag, . .ap,b(],b]_,bz,. ..,bp,kl,kz,. . .,k‘p]

This state space system in companion parametrisation can be converted to an AR-
MAX model in polynomial representation, such that the ARMAX polynomials are
written in terms of a;,b; and k;. Specific details are given in Appendix 1. The
ARMAX model is defined as

A(Q)y(t) = Blgu(t) + Clg)e(?)

The polynomials are defined in short-hand notation as

Alg) = [1, a1, a2, ..., ap
B(q) = [0, bl, bz, cey bp] + [bo, albo, azb(),... ,a,pb()]
C(q) = [1, ai, az, ..., ap]+[0, ki, ko, ..., kp]

Short-hand notation is described in section 2.1. The following observations regard-
ing the polynomials are made

The A(q) polynomial

This polynomial is responsible for autoregression on the output time series and is
dependent on the a; parameters.

The B(q) polynomial

This polynomial consists of two sets of parameters: b; and a;. The b; parameters,
for 7 > 1, define a moving average process acting on the exogenous input. The a;
parameters define a second moving average process acting on the input, but only
exists if there is a feedforward term between input and output. In other words,
only if there is a zero-sample time delay between input and output which means a
non-zero D.

The C(q) polynomial

This is the most interesting polynomial. It is made up of two sets of parameters:
a; and k;. The a; parameters are due to observation noise. The k; parameters are
due to process noise. Therefore a; shapes the observation noise contribution to the
noise model, and k; shapes the process noise contribution to the noise model.

10



There therefore exists a one-to-one mapping between an ARMAX model in state
space observer canonical form and polynomial form. It is illuminating to consider
what happens when process noise, observation noise and the D matrix are separately
set to zero. In such a way it is possible to derive ARMA, ARX, and even AR models
(with further constraints). These are shown together with another model called the
direction-of-arrival (DOA) model in table 2 for an order 3 state space. Results can
be readily extended to higher orders using similar mathematics as in Appendix 1.
Two models are considered in a little more detail. These are the AR model and the
DOA model.

2.4 The AR model

In this section, the AR model is derived from the 2nd ARMA model listed in the
table. The ARMA model is given by

2(t+1) = A@0)z(t) + K(O)e(t) (14)
y(t) = C(0)=(?) (15)

If K(6) = [0,1,0,0]%, then the polynomials reduce to

A(g) = [1,a1,a2,as]
B(g) = 10,0,0,0]
C(g) = [0,1,0,0]

The polynomial model is therefore A(q)y(t) = g le(t). Because e(t) is a random
process, time enumeration has little meaning, and so, neglecting end effects, this
process is identical to A(q)y(t) = e(t). Therefore the AR model assumes that
observation noise is zero, and that process noise only enters via the second state
component.

2.5 The DOA model

The DOA (direction-of-arrival) parametric form appears in two research fields: the
time series problem of estimating decaying exponentials in noisy data, and the
spatial problem of estimating the direction-of-arrival of sinusoids impinging on an
antenna array. Refer to [26] and [34] for more details. In this section, the state
space model listed under DOA in table 2 is developed further to give an equation
which is standard for DOA problems.

Consider a stochastic system with no process noise and no deterministic input.
There is therefore no energy driving the system. Instead the state vector decays
exponentially to zero from an initial value or else explodes in an exponential manner
in the direction of the leading eigenvector of A, depending on whether the leading
eigenvalue is less than or greater than unity respectively. The state space equations
are

11



ARMAX model

5 Requires non-zero initial conditions on the state vector.

z(t+1) = Az(t) + Bu(t) + Ke(t) | Alq) = [1,a1,a2,a3]
y(t) = Cz(t) + Dut) + et) | Blg = [0,b1,b2,b3] + bo[l,a1,a2,as]
C(q) = [1,(11,02,03] + [07k17k27k3]
z(t+1) = Az(t) + Bu(t) + Ke(t) | Alq) = [1,a1,a2,a3]
y(t) = Cm(t) + e(t) B(q) = [07 b17 b27b3] + [0707070]
C(q) = [17a17a27a3] + [07k17k27k3]
z(t+1) = Az(t) + Bu(t) + Ke(t) | Alq) = [1,a01,a2,a3]
y(t) = CfL‘(t) + Du(t) B(q) = [07 b17 b21 b3] + b0[11 a1,az2, a3]
C(q) = [0707070] + [07k17k27k3]
OE model
z(t+1) = Az(t) + Bu(l) A(g) = [1,a1,a2,as3]
y(t) = Cz(t) + Dut) + e(t) | Blg = [0,b1,b2,b5] + bo[l,a1,a2,as]
C(q) = [1,04,(12,(13] + [0707070]
z(t+1) = Az(t) + Bu(t) A(g) = [1,a1,a2,as]
y(t) = Cm(t) + e(t) B(q) = [0, b17 b2,b3] + [0707070
C(q) = [1,@1,&2,&3] + [0707070
ARX model
z(t+1) = Az(t) + Bu(t) + Kle(t) ]| Alq) = [1,a1,a2,a3]
y(t) = Cm(t) + Du(t) B(q) = [07 b17 b27 b3] + b0[17 a1,0a2, a3]
Clg = [0,0,0,0] + [0,1,0,0]
et+1) = Az(®t) + Bu@t) + Kle(t)| A(lQ) = [1,a1,a2,a3]
y(t) = C{E(t) B(q) = [01 b17b27b3] + [0707070
Cl@ = [0,0,0,00 + [0,1,0,0
ARMA model
wt+1) = Az + Ke®) | A() = [ a1,as a]
y(t) = Cz(t) + e(t) | Ble) = [0,0,0,0] + [0,0,0,0]
Clg) = [l,a1,02,a3] + [0,k1,k2, ks3]
z(t+1) = Az(t) + Ke(t) | A(e) = [1,a1,a2,a3]
y(t) = Cz(t) B(g) = [0,0,0,0] + [0,0,0,0]
C(q) = [0707070] + [07k17k27k3]
AR model
z(t+1) = Az(t) + Kfe(t) | A(g) = [1,a1,a2,as3)
y(t) = Caz(t) B(g) = [0,0,0,0] + [0,0,0,0]
Clg = [0,0,0,0] + [0,1,0,0]
DOA model *
x(t + 1) = A.T,‘(t) A(q) = [1’ al’a2’a3]
y(t) = Cz(t) + e(t) | Blg9 = [0,0,0,0] + [0,0,0,0]
C(q) = [1,01,&2,&3] + [0>070,0]
YK =10,1,0]

Table 2: Polynomial models in companion state space form. For convenience, the

dependency on @ is dropped and the state space is order 3.
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Consider a linear transform of the state space Z(t) = Rz(t), where R is non-singular.
The state equations can be rewritten as

(¢ +1) = RA(OR 1&(1) (18)
y(t) = COR™E(t) + e(t) (19)

If A(9) has p linearly independent eigenvectors, then R can be chosen such that
it diagonalises the state transition matrix RA(9)R™! = diag(A1,...\,) where \;
are the eigenvalues of A(f). Refer to Kailath [16] for more details. However if
A(6) does not have p linearly independent eigenvectors, then it is not possible to
diagonalise the A matrix. Once in diagonal form, the output becomes a sum of
decaying exponentials corrupted by additive output noise, where initial amplitudes
are determined by the initial conditions on the state vector z¢;, and the entries of
the C(6) matrix ¢;

y(t) = ici 20, /\f + e(t) (20)

This parametric form is the standard DOA equation. From this argument, it be-
comes clear that the DOA model is a state space system where process noise is zero,
observation noise need not be zero, and the state vector has non-zero initial condi-
tions. Further details on the DOA model and how DOA algorithms adopt subspace
state space parameter estimation methods are discussed more fully in Appendix 2.
The DOA model can be realised in state space or polynomial form.

2.6 State Space Models in Block Matrix Form

State space models can be extended one step further to block matrix form. The rea-
son for this is because this block matrix formulation is used in the 4SID algorithms
which have gained recent popularity, particularly in the control literature. 4SID is
an acronym for subspace state space system identification and is explained in sec-
tion 3.3. Consider the general state space equations written in forward innovations
form as in equations 9 and 10 except the dependency on 6 is dropped. Refer to Van
Overschee and De Moor [39] and Chui [7]. In this section single-input-single-output
(SISO) systems only are considered.

z(t+1) = Az(t) +Bu(t) + Ke(?) (21)
y(t) = Cz(t) + Du(t) + e(t) (22)
Consider input u(t) in Hankel matrix form. The number of rows in the Hankel

matrix equals 2i where ¢ is termed the block size. The number of columns is j.
Therefore each Hankel matrix contains samples from time 0 to (27 + j — 2).

u(0) u(l) ... u(j - 1)
Unor s dof u(:l) u(2) u(])
w(2i—1) w(2) ... w(2+j-2)

This Ugp2;_1 can be segmented into two blocks each with i number of rows.

13



[ u(0) u(1) u(2) u(j —1)
u(1) u(2) u(3) u(j)
. i | u-1)  u@)  u@+1) ... u(i+j-2)
oj2i-1 = uw(@d)  uw@+1) u@+2) ... ulit+j—1)
uw(@+1) wu(@+2) u@+3) ... u(i + j)
| w@i—1) u@) u@itl) ... w(@i+j-2) |
def [ Uo\z’—1 déf Up
L Ui ] [ Uy ]

The output and innovations are similarly formed into Hankel matrices to give
Yy2;—1 and Eg2;_; which are similarly separated into upper and lower blocks.
For convenience of notation, the upper block is referred to as the past data, and the
lower block as the future data, denoted with subscripts p and f respectively. Thus
the following definitions are made:

d U d Y def | E
Uoj2i-1 =4 [ Up ], Yoi2i-1 &f [Y—i], Egp2i-1 = [ E? ]

f
where

def def

U, 2 Ugji—1, U; = Uijj2i-1
def def

Yp = YO\z’—la Yf = Yi\2i—1
def def

E, = Egji—1, E; = E;2i1

Having conveniently represented input, output and innovations data, it is now nec-
essary to represent the state vectors in a block matrix form. Consider a sequence
of state vectors from time ¢ = 0 to time ¢t = (j — 1) stacked side-by-side in a single
matrix Xg j_1. Consider a matrix X; ;1 ;_1 similarly defined.

Xoj1 & [2(0) 2(1) z(2) ... z(G—1)]
Xiirj1 2 [a(@) z(i+1) 2G@+2) ... 2(i+j-1)]

By some trivial calculation using the state space equations in innovations form, it
can be shown that the following equations hold:

Xiitj-1 = AXgj_1+ AfUgi_1 + AVEq;_4 (23)
Yoi-1 = TiXo -1 +H{Ug_1 + HYEgi_y (24)
A% and AY are reversed extended controllability matrices, T'; is the extended ob-

servability matrix and Hf and HY are Toeplitz matrices. These are all defined
below where I; is a 1 x 1 identity matrix.

A¢ ¥ [A'B AI?B ... AB B ]
Ar T ACIK A2K ... AK K ]
C L 0 D
CA CK L CB D
r; & Hy ¢ ‘ ‘ He & ‘
CA™! CA™’K ... CK I CA"’B ... CB
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This is the full state space block representation of the system. The notation for
equations 23 and 24 can be simplified to express relationships between the past and
the future. Note the similarity with the state space equations 9 and 10.

X; = AX,+ AU, + A"E, (25)
Y, = IiX,+H/U,+H'E, (26)
Y, = I'iXp+ HgUf +HYE; (27)

2.7 Initial Conditions

There are two methods to make an optimal estimate of the dynamics of a process at
time ¢t = T, or a prediction of the output at time ¢ > T'. The first method involves
knowing all input data from time ¢t = —oco to ¢t = T. The second method involves
knowing all input data from say t = 0 to ¢ = T plus the initial conditions on the
state vector at t = 0. The state vector has the property of storing information about
the past history of inputs for ¢ < 0. Therefore, given a finite amount of input data,
it is possible to estimate without bias the dynamics of the process and to predict
outputs only if initial conditions on the state vector are known. Otherwise bias is
introduced into the estimate. This shows the importance of modelling the initial
conditions of the state accurately. Both polynomial and state space models allow
initial conditions to be included in the representation. A difficult problem may be
to estimate accurately this initial state without a priori knowledge, which becomes
an identification or parameter estimation problem.

However as data lengths get longer, the effects of initial conditions become less
and less for an asymptotically stable system, at a rate determined by the time
constants of the system. These in turn depend on the eigenvalues of A(f). So for
long data lengths, estimates of the dynamics are fairly accurate even if the initial
state vector is unknown and assumed zero instead.

2.8 A Comparison Between State Space and Polynomial Mod-
els

A significant difference between the polynomial and state space models concerns

model order reduction. Consider the state space system in general form, where
dependency on 6 is again dropped for convenience of notation.

z(t+1) = Az(t) + Bu(t) + w(t) (28)
y(t) = Cz(t) + Du(t) + v(t) (29)

The state space is not unique but shows rotational invariance. Let £ = Rz, where
R is a non-singular matrix called a similarity transformation. R is often rotational,
but may also be time-dependent or may change the number of states. The state
space equations can be rewritten as

#(t+1) = RAR'Z(t) + RBu(t) + Ruw(t) (30)
y(t) = CR 'i(t) + Du(t) +v(t) (31)
The system matrices A and RAR™! are said to be similar. Therefore it is mean-

ingless to talk of the states of a system but instead the states of a particular

realization of the system. Now consider partitioning the state space such that
z(t) = [z1(t) 723 (1))
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Elimination of the z5(t) subspace is achieved by simple truncation of the state space
matrices. This gives a reduced order state space system.

z1(t+1) = Apzi(t) + Biu(t) + w(t) (34)
y(t) = Ciz1(t) + Du(t) + v(t) (35)

Subspace elimination is therefore used in the low order approximation of a higher
order system. The choice of state space realization or basis determines the subspace
rejected and the frequency-domain distribution of errors between the high order and
low order model.

One method of reducing the order of a polynomial model is simply to truncate
its polynomials. In effect, this is the same as first casting the polynomial model
into companion parametrisation state space form and then eliminating a subspace
using the mathematics as described above. However the subspace eliminated may
not coincide with the weakest subsystem of the model, and therefore may lead to
the elimination of important information pertaining to the dynamics of the process.
A more meaningful method for model order reduction is first to find a balanced
state space basis [23]. Once the state space is cast in such a balanced realization,
then simple truncation of state space matrices does result in the elimination of the
weakest subsystem of the model. The rejected subsystem may either be noise, or
may be signal modes which play an insignificant part in the dynamics of the process.

Therefore the state space model has the advantage over the polynomial model
in that there is greater flexibility in the choice of state space basis. This basis
can be chosen in an optimal manner to facilitate model order reduction. 4SID
methods represent the state space in a frequency-weighted balanced form. This
frequency-weighting weights the frequency-domain distribution of modelling errors
between the high and low order models. Refer to Enns [9], Van Overschee and De
Moor [36, 39] and Kim et alia [18] for further details, including discussion on error
bounds.

Apart from the frequency-weighted balanced basis, another important state
space basis is that of the diagonal form of A. Diagonalisation of the A matrix
means that the output y(¢) is a sum of independent modes which evolve separately.
These physical modes can be interpreted as belonging to certain speech formants
or the speech harmonics (for voiced speech) depending on the dimensionality of the
state space. The equations then describe how much noise is added to each mode.
Moreover time constraints may be added to control the evolution in time of each
mode. However it is only possible to diagonalise the A matrix if it has linearly
independent eigenvectors.
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2.9 Summary

A discrete-time LTT dynamical system is described in terms of a transfer function
and a noise model.

y(t) = G(g,0)ul(t) + H(g,0)e(t) (36)

This model can be represented in two ways: in polynomial or state space representa-
tion. To compare these two representations on a like-by-like basis, many polynomial
models can be cast into state space form: for example, ARMAX, ARX, OE, ARMA
and AR. The advantage of such a comparison is that it becomes clear that poly-
nomial models often make assumptions about the structure of the system matrices
and the nature of observation and process noise. Furthermore, order reduction
of polynomial models by simple truncation of polynomials to remove insignificant
signal modes or noise modes does not necessarily result in the elimination of the
weakest subsystem. A state space model on the other hand can be chosen which
applies no constraints to the system matrices and noise, and casts the state space
into a balanced basis, which lends itself readily to order reduction by elimination
of the weakest subsystem. Both polynomial and state space models allow initial
conditions for the state vector to be included.
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3 Parameter Estimation Techniques

Having investigated different models for the speech process and different ways of
representing these, it is necessary to consider algorithms to estimate the parame-
ters of these models. There are three popular methods for parameter estimation.
These are prediction error minimisation (PEM), instrumental variables (IV) and
subspace state space system identification (4SID). Maximum likelihood (ML) and
least squares (LS) are subsets of PEM. Direction-of-arrival (DOA) methods are gen-
erally a subset of 4SID. The purpose of this section is to outline PEM, IV and 4SID
parameter estimation algorithms briefly. A detailed investigation of the relationship
between these three algorithms and their subsets regarding the distribution of mod-
elling errors is left for a future report. Below is a description of the fundamentals
of the three techniques.

3.1 Prediction Error Minimisation (PEM)

PEM methods are discussed extensively by Ljung [21]. They attempt to determine
the parameter 8 which minimises some function of a possibly prefiltered sequence
of say N samples of the innovations er. These innovations are equal to the one-
step-ahead prediction errors which explains the meaning of the PEM acronym.

6 =argy min Y, , f(er(1,0)) (37)

Often a squared norm is selected as the function, so that PEM minimises the sum-
squared innovations sequence.

N
6 = arg, min Ze%(t,@) (38)
t=1

N 2
— gy min 3 (700,00 [r(0) - Gla,O)ur(1) ) (39)
t=1

where yr(t) and up(t) are prefiltered output and input respectively. For AR and
ARX models this optimisation reduces to a single-step least-squares algorithm.
However for more complicated models such as ARMA and ARMAX, the algorithm
is iterative and may become prone to problems common to iterative algorithms such
as convergence to local rather than global optima, sensitivity to initial conditions,
slow convergence, lack of convergence etc.

Maximum likelihood (ML) methods are probabilistic methods. In some cases
these may be considered as PEM methods. For example, consider the following
probability model for the filtered innovations: innovations are assumed Gaussian
distributed, zero mean and temporally independent. Innovations are scalar and
the innovations covariance matrix reduces to a scalar variance o2, which must be
known a priori.

p({er(1),....er(N)}H0,0e.) = LI p(er ()6, 0e,) (40)

2
H,{il (271'0;)_1/2 exp{ - M} (41)

2
202 -

ML determines the following estimate of 6.
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0 = argy max logp({er(1),...,er(N)}0,0¢s)
t,0

2 en(t,0)
= argy, max Z— 202
t=1 er
N o
) en(t,0
= argy min Z ;éz )
t=1 er
N
= argy min Zefv(t,@)
t=1
N 2
= argy min 3 (H<q,0)—1[yp<t) e 9)uF(t)]) (42)
t=1

For scalar innovations sequences of known variance, ML estimation is therefore iden-
tical to PEM with a squared innovation norm. In some cases, maximum likelihood
methods are therefore a subset of PEM. The relationship between PEM and ML is
discussed by Astrom [1] and Ljung [21].

3.2 Instrumental Variables (IV)

The motivation behind instrumental variable methods is that the prediction er-
rors for a given model should be independent of and uncorrelated with past data.
Otherwise the predictor ¢(¢|#) misses some important dynamics and information
concerning the output which feeds through to the prediction errors. The aim of IV
methods is to estimate a model such that the prediction errors are maximally uncor-
related with some vector of the past data (. This is termed the correlation vector,
instrument or instrumental variable. Usually ( is selected to be finite-dimensional
and may simply be a vector sequence of past output and input samples. Consider
a model where the predictor §(¢|6) is given as in the predictor model in equation 5

g(te) = ¢7(t,0)0

where § € R¥*!, If the vector ¢(t,#) is independent of the model parameters § then
the equation is termed linear regression. Otherwise it is known as pseudo-linear
regression. The IV method can be summarised as follows.

e Determine a filtered sequence of prediction errors, where L(q) is a linear pre-
filter.

er(t,0) = L(g)[y(t) - ¢" (t)0] (43)

e Determine a suitable set of instruments which operates on the past input
sequence. These instruments ((¢,6) should be maximally uncorrelated with
observation noise, but maximally correlated with the regression variable ¢.
K,(q,0) is a d-dimensional column vector of linear filters.

((£,0) = Ku(g,0)u(t) (44)
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e Determine the parameter § which maximally uncorrelates the instruments
with the filtered prediction errors. A shaping function a can be introduced.

N 2

6 = arg, min| > ({1, 6)aler(,,6)) (45)

t=1

An appropriate norm is selected. If the dimensions of the instruments (
equals d, then 67V is determined as that value of # where the right-hand side
of equation 45 equals zero and this is termed the IV method. If the dimension
of ( > d, it is necessary to minimise the norm, and the technique is termed
the extended IV method.

An advantage of the IV method is its simplicity. Ljung in chapter 15 of [21]
advises that IV methods can be used for a quick estimate of the transfer function,
which can later be refined if necessary by a PEM method. This is in fact the
general algorithm which several MatLab iterative PEM functions adopt when no
user-defined initialisation estimates are given.

In this report two IV methods are investigated: one for an AR model and the
other for an ARX model. The AR method employed during experiments is an
algorithm which computes an approximately optimal choice of IV procedure to
estimate the AR part of a scalar time series A(q)y(t) = v(¢). The noise sequence
v(t) is assumed to be a moving average process. Refer to [33] for further details and
the fvar MatLab function in the manual [22]. The second IV method estimates the
parameters of an ARX model using an approximately optimal 4-stage instrumental
variable procedure as detailed in chapter 15 of [21] and the v/ MatLab function
[22].

3.3 Subspace State Space System Identification (4SID)

PEM and IV methods operate by summing over the innovations sequence, and
therefore act on a vector sequence. 4SID methods on the other hand work with
block matrices. Van Overschee and De Moor present a comprehensive overview of
subspace system identification methods in [36, 37, 38, 39].

Consider the most general state space model: the combined deterministic-stochastic
state space model. Equations 25, 26 and 27 give this model in forward innovations
block matrix form. 4SID methods operate on these forward innovations block matrix
equations by identifying subspaces which are orthogonal to nuisance signals (such
as noise and deterministic input), but correlated with signals of interest. 4SID
methods then project input and output data down onto these subspaces. Hence the
reasoning behind the name: subspace state space system identification.

4SID algorithms are generally composed of two stages

e low-rank approximation and estimation of the extended observability matrix
directly from the input-output data, by means of an oblique or orthogonal
projection.

¢ estimation of the system matrices from the column space of the observability
matrix using a least-squares (LS) criterion.

Consider the future output block equation from equation 27

Y; = I;X;+H{U;+HYE; (46)
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Denote matrix W, = (U7'YT)”. To remove noise and deterministic input effects,
matrices undergo an oblique projection® onto the row space of W, along the row
space of Uy (refer to Appendix 3 for details of the oblique projection).

Yf/Ume = rixf/Ume + HgUf/Ume + H?Ef/Ume (47)

By definition U /y,20, = 0 and provided the Hankel matrices are sufficiently large,
then Ef/u,20, ~ 0. Equation 47 can therefore be rewritten as

Yf/UfQUP = I‘ixf/Usm]p (48)
= Ii'X;

Greater flexibility is obtained by weighting the oblique projection with weighting
matrices W1 and W, and analysing the weighted oblique projection: W1 (Y f/y,20,)Wo.
W, and W relate to weighting the optimisation criterion in the frequency domain.
This has the effect of weighting the frequency distribution of prediction errors.

Therefore the column space of the oblique projection Y/y,20, matches the
column space of the extended observability matrix. From the column space of this
observability matrix the system matrices (A, B, C,D) can be determined by a least-
squares criterion. The process and observation noise covariances (Q, R) respectively
can also be calculated. Refer to [39] for specific algorithm details. Unlike some PEM
methods, 451D methods are non-iterative.

In the absence of a deterministic input signal, the equations become stochastic
only. Thus the oblique becomes an orthogonal projection onto Y,, and is similar
to instrumental variable (IV) methods as explained in [41].

There are a variety of 4SID algorithms. These include N4SID (numerical al-
gorithms for subspace state space system identification), MOESP (multivariable
output-error state space) and CVA (canonical variate analysis) [39, 41]. N4SID,
MOESP and CVA differ with respect to the weighting matrices W; and W and
the implementation details of the algorithms, but are similar in theory.

The DOA (direction-of-arrival) problem which concerns determining the direc-
tion of arrival of signals impinging on an antenna array can also be cast in a subspace
format. Refer to Appendix 2 for further details.

3.4 Summary

There are three popular methods for parameter estimation: PEM, IV and 4SID. In
some cases ML can be considered a subset of PEM. DOA algorithms are a subset
of 45ID. PEM methods are most popular with polynomial models and attempt to
minimise a sequence of prediction errors. However algorithms may be iterative and
complicated. IV methods are simpler than PEM methods and rely on minimising
the correlation between the prediction errors and past data. 4SID methods work
on state space models in block matrix form. They operate by identifying low-order
subspaces which are orthogonal to undesirable signals such as deterministic input
and noise, project the state space system onto these subspaces, and then estimate
state space system matrices. 4SID algorithms are non-iterative.

2This oblique projection coincides with a minimum squared error between true data Yy and its
linear prediction from Wy, and Uy [39]
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4 Validation of Models

Section 1.1 describes system identification as consisting of three stages: specifi-
cation, identification and validation. Section 2 addresses the issue of model set
selection. Section 3 addresses the issue of identification of model parameters and
the associated criterion of fit. The purpose of this section is to describe some sim-
ple methods for model validation. In other words, how do we know that a given
model accurately models the output, and how can we say one model or parameter
estimation technique is better or more appropriate than another? In this section,
various methods of validation are presented including waveform prediction, para-
metric spectrograms and the whiteness and zero-mean properties of the innovations
(otherwise known as one-step-ahead prediction errors).

4.1 Speech Reconstruction

Once a model is selected and its parameters estimated, it can be used to reconstruct
the speech using the one-step ahead predicted waveform. This can then be compared
with the original waveform using the sum-squared difference criterion. This report
investigates one-step ahead prediction only. In other words, the output at time ¢
is predicted using all input and output information up to and including ¢t — 1. The
MatLab function predict [22] is used throughout. predict implements one of two
methods.

e Method 1. For polynomial models, the predictor is calculated using equa-
tion 4, where G and H are defined in terms of polynomials.

g(tlt—1) = H™'(q,0)G(q,0)u(t) +[1 - H (g, 0)]y(t) (49)

e Method 2. For state space models, one-step ahead prediction is calculated
using a Kalman filter. This filter predicts the output using the following

equations
y(tlt —1) = Cuz(t|t — 1) + Du(t) (50)
z(tlt—1) = (A-KCz(t—1)+Ky(t—1)+ (B - KD)u(t—1) (51)

2(1]0) is the initial condition which need not be zero.

4.2 Spectral Estimation

Spectrograms of a waveform show the evolution in time of a spectrum. Typically,
the waveform is divided into fixed-length and possibly overlapping frames. For each
frame, the spectrum is calculated. These frame-based spectra are then compounded
into a single chart such that the horizontal axis displays time, the vertical axis
frequency, and the colour or grey-scale the energy at that particular frequency and
time. In this report, power spectra only are considered. Two types of spectrogram
are considered where ) is the estimated variance of the innovations.

¢ Noise Model Spectrogram. Spectra are defined using ®,,(w) = | H(e/“T,0) 2.

e Output Spectrogram. Spectra are defined using @, (w).
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These are related via the following equations, where time-domain functions are
converted to power spectra.

(t)

Yy G(q,0)u(t) + H(g,0)e(t)
<I)y(‘*‘})

G(e7T,0)P@u(w) + AlH (7T, ) (52)

The noise model and output spectrograms differ because the former neglects
input energy. This means that the two spectrograms may have very different energy
ranges and hence may require different diagram scalings. Inspection of noise model
and output spectrograms by eye provides useful information especially about how
formants are modelled.

The difference between spectrograms from two different models can also be eval-
uated using spectral difference measures. Chapter 4 of [25] discusses many spectral
difference measures related to speech processing. These spectral difference measures
can be modified to take into account those perceptually important characteristics of
speech. In this section, measures are not discussed in detail. Instead use is confined
to the mean squared log spectral difference d(S;, S2)?. This defines the difference
between two spectra S; (e/“T) and S2(e/“7T) as

d(S1,8:)° = / | log S1 (T — log S2(e7T)|*dw (53)

-

The integration is approximated to a summation for discrete spectra. This differ-
ence measure between two spectra can be extended to the difference between two
spectrograms by calculating this measure for each frame and then summing over all
frames.

4.3 Innovations Whiteness Test

The quality of a model can be determined from its innovations sequence. An accu-
rate model should produce a temporally white innovations sequence. Whiteness is
tested using a statistical hypothesis test and conducted for each frame. Refer to [6]
and [14] for details on statistical hypothesis tests, and Candy [5] for the particular
whiteness test implemented during these experiments. (Candy uses this test in a
Kalman Filter tuning application). The whiteness test adopts the null hypothesis
Hj that the prediction errors are white. The alternative hypothesis H; is that the
prediction errors are not white. The test statistic used is the normalised biased
autocovariance estimate and termed p. Under the null hypothesis, asymptotically
for a large number of samples (such as 30 and above) the autocovariance estimate
becomes normally distributed ~ N (0, +). The 95 % confidence limits are given by

where N is the number of innovations. Under the null hypothesis, 95% of p(i) for
i # 0 estimates should therefore lie within this confidence interval. During these
experiments the percentage of samples outside this confidence interval is calculated
for each frame. If it exceeds 5 % then the null hypothesis is rejected at the 5 %
significance. Note that the converse is not necessarily true. If the percentage is less
than 5 %, then this does not necessarily imply that the null hypothesis is true; it
just means that there is insufficient evidence to reject it.
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4.4 Innovations Zero-Mean Test

For an accurate model the prediction error sequence should be zero-mean. Dur-
ing these experiments an hypothesis test is conducted on each frame to determine
whether zero is a possible mean for the prediction error sequence. The test adopts
the null hypothesis Hj that the mean is zero. The alternative hypothesis H; is that
the mean is not zero. The test statistic employed is

= (55)

where Z is the sample mean, y is the true mean and s is the sample standard devi-
ation. Under the assumptions that the prediction errors are Gaussian distributed
(it is necessary to make some assumption about the distribution of errors for this
hypothesis test to be formulated), this test statistic is distributed according to a T-
distribution. The p-value is of interest. The p-value is the probability of observing
the given sample result under the assumption that the null hypothesis is true. And
if the p-value is less than a significance level 5%, then the null hypothesis can be
rejected at the 5% significance. However the converse is not necessarily true. If the
p-value is greater than 5%, this does not necessarily imply that the null hypothesis
is true; it just means that there is insufficient evidence to reject the null hypothesis.
Therefore the p-value can be used to assess the zero-mean nature of the innovations
sequence. Refer to [6] and [14] for more details on zero-mean hypothesis tests.
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5 Experiments

Experiments are conducted on the phrase “a small set of letters”, spoken by an
adult male. The speech waveform and laryngograph are obtained from the Eurom
0 database [11] and sampled at 16 kHz. The word “small” is particularly interesting
because of the proximity of two of the frequency formants of the vowel in “all” which
are between 3kHz and 4kHz and are only about 300 Hz apart (chapter 2 of [8]).

Due to non-stationarity, each speech waveform is divided into fixed-length, over-
lapping and windowed (hamming) analysis frames 15 ms (240 samples) in duration,
shifted 7.5 ms (120 samples) each frame. Speech is assumed stationary within each
frame. Overlap gives smoother parameter transitions and better quality reconstruc-
tion. Reconstruction employs the overlap-add method.

Due to the time delay for air to flow from the glottis to the microphone, it is
necessary to align the laryngograph with the speech signal prior to analysis. From
several tests, this delay was estimated to be 12 samples by considering the time
difference between the peaks in the derivative of the laryngograph and peaks in the
speech signal residue after inverse filtering the speech with an AR model. This was
applied to the entire sentence uniformly. However there may be slight differences
in delay across the sentence depending on whether the speaker moved his head
significantly during speaking.

Using the laryngograph, the degree of voicing for each frame is determined and
the frames divided into two classes: voiced and non-voiced frames, where non-voiced
includes both unvoiced speech and silence. In all there are 87 voiced frames, and 83
non-voiced frames. Voiced frames are those frames which contain a laryngograph
where derivatives are above a given threshold®. The voiced frames are analysed
separately from the non-voiced frames.

Because of the difficulties in modelling the glottal waveform, input during voiced
frames is approximated as a series of Rosenberg pulses [27], with closure synchro-
nised to the dominant impulses in the derivative of the laryngographic data. Each
pulse is a piecewise trigonometric function. Opening and closing phases of a glottal
pulse are T, and T, respectively where T is the glottal period. During these exper-
iments, T, = 0.4T, T, = 0.16T and = 1 are a priori estimates which remain fixed
during the analysis. Rosenberg pulses are described by

z(t) = ¢ [1 —cos(;i—f)] 0<t<T,
= acos[’r(';;n“)] To <t<T,+T.
0 T,+T, <t<T,

Input during non-voiced frames is set to zero. This glottal waveform is also framed
and windowed as for the speech.

Noisy speech is prepared by adding white additive Gaussian noise to the clean
waveform to give 20dB SNR averaged over the whole waveform. Throughout the
experiments speech is not preemphasised prior to analysis.

5.1 Experimental Details

The previous section describes how the speech waveform a small set of letters is di-
vided into fixed-length, overlapping frames. In this report, four sets of experiments
are conducted.

Experiment Set 1 The purpose of these experiments is to compare the accuracy
of different speech models using a common parameter estimation technique. Voiced

3The threshold for laryngograph derivatives is defined as 1000. These derivatives are typically
-1000 to 45000 for the voiced all sound in small for example.
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speech frames only are modelled because these voiced frames have deterministic in-
put. Models considered are ARMAX, ARX, OE, ARMA and AR. PEM is used as
the common parameter estimation technique. Experiments are conducted on both
clean voiced speech and noisy voiced speech.

Experiment Set 2 The purpose of these experiments is to compare the accuracy of
different parameter estimation techniques for common speech models. Again voiced
speech frames only are modelled. Parameter estimation techniques contrasted are
PEM, IV and 4SID. These are compared on a variety of models. Experiments are
conducted on both clean voiced speech and noisy voiced speech.

Experiment Set 3 These experiments analyse non-voiced speech frames only.
The purpose is to ascertain whether trends displayed during experiment sets 1 and
2 conducted on wvoiced speech also apply to non-voiced speech. Only ARMA and
AR models are considered due to lack of deterministic input for non-voiced sounds.
Only PEM and IV parameter estimation techniques are employed. 4SID techniques
are not considered because the MatLab function for 4SID seems to require deter-
ministic input. Experiments are conducted on both clean non-voiced speech and
noisy non-voiced speech.

Experiment Set 4 The purpose of these experiments is to apply the speech mod-
elling results from previous experiments to the practical problem of speech enhance-
ment. Noisy speech as used in previous experiments are enhanced using a Kalman
filter.

Information concerning the models analysed are given in table 3 together with
the corresponding MatLab functions (where z denotes a two column vector with the
first column as output and the second as input). n = 12 during the experiments,
meaning models are either order 12 or 13.

For the ARMAX model, there are three model types: ARMAX1, ARMAX2
and ARMAXS3. These models vary the order of the A(g) polynomial, and the time
delay between input and output. The purpose is to determine whether there is
advantage in including a zero-sample delay or unit-sample delay in the polynomial
model. (This zero-sample delay term corresponds to a non-zero D matrix in the
state space model.) This is also done for all other models.

5.2 Algorithm Details for MatLab Functions

Default options for each MatLab function are used throughout the experiments
unless otherwise stated.

e armaz and oe both employ a robustified quadratic prediction error criterion
minimised using an iterative Gauss-Newton algorithm. Initial parameter es-
timates are provided by a four-stage least-squares IV algorithm. There are
differences between the two functions relating to the calculation of prediction
errors and gradients.

e arzis solved by the least squares estimate from an overdetermined set of linear
equations.

e v/ estimates the parameters of an ARX model using an approximately opti-
mal four-stage instrumental variables (IV) procedure.

e ar estimates the parameters of an AR model for a scalar time series using
variants of the least-squares method.
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Model Order | Input- | MatLab Error MatLab
Output | functions Criterion | predict
Delay method
ARMAX1 12 0 armax(z,[n (n+1) n 0]) PEM 1
ARMAX2 12 1 armax(z,[n n n 1]) PEM 1
ARMAX3 13 1 armax(z,[n (n+1) n 1]) PEM 1
N4STD1 12 1 | ndsid(zn,1,[J,0 1 0]) N4STD 2
N4STD2 12 1 | ndsid(zn,1,[],[0 1 1)) N4SID 2
N4SID3 12 0 ndsid(z,n,1,[],[1 1 1]) N4SID 2
N4SID4 12 0 n4sid(z,n,1,[],[1 1 0]) N4SID 2
ARX1 12 0 arx(z,[n (n+1) 0]) PEM 1
ARX2 12 1 arx(z,[n n 1]) PEM 1
ARX3 13 1 arx(z,[n (n+1) 1]) PEM 1
Iv41 12 0 ivd(z,[n (n+1) 0]) v 1
V42 12 1 | ivd(z[nn 1)) vV 1
1v43 13 1 ivd(z,[n (n+1) 1)) v 1
OE1 12 0 oe(z,[(n+1) n 0]) PEM 1
OE2 12 1 oe(z,[n n 1]) PEM 1
OE3 13 1 oe(z,[(n+1) n 1)) PEM 1
ARMA 12 armax(z(:,1),[n n]) PEM 1
AR1 12 ar(z(:,1),n,’1s’,’ppw’) PEM 1
AR2 12 ar(z(:,1),n,’1s’,’now’) PEM 1
AR3 12 ivar(z(:,1),n) v 1

Table 3: Models analysed during the experiments with the corresponding MatLab
functions, parameter estimation techniques and the method used for one-step ahead

prediction (refer to section 4.1), n = 12
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5.3

1war estimates the parameters of an AR model using an approximately optimal
choice of instrumental variable procedure.

n4sid employs Van Overschee and De Moor’s N4SID algorithm, which is a nu-
merical algorithm for subspace state space system identification as described
in section 3.3. Refer to the MatLab manual [22] and [39] for N4SID algorithm
details.

Analysis of Results

The results from experiment sets 1 to 4 are analysed in terms of the prediction
errors, the shape and consistency of the spectrograms and the perceptual quality
of the one-step-ahead predicted waveforms during informal listening tests. During
this report, particularly in the appendices, results are presented using abbreviations
for the sake of brevity. In this section these abbreviations are explained. Table 3
lists the terminology for all models referred to throughout the report. Evaluation
results for each model are presented using the following abbreviations:

predict These are the one-step ahead prediction errors.

filter These are the errors between original clean and Kalman filtered wave-
forms.

sse. This is the median sum squared error between original clean and re-
constructed (predicted or filtered) output waveform, averaged over all frames.
The error is calculated for each frame before resynthesis using the overlap-add
method. The median average is employed. This is to make the average more
robust against spurious results which occur occasionally due to numerical in-
stability. Refer to section 4.1.

whiteness. This is a measure of the whiteness of the predicted or filtered
errors, averaged over all frames. The whiteness is measured for each frame
before resynthesis. Whiteness is the percentage of points in the biased auto-
covariance sequence which lie outside the 95 % confidence interval for a white
sequence. Refer to section 4.3. The median average is employed.

zero-mean. This is a measure of the zero-mean property of the predicted or
filtered errors, averaged over all frames. Zero-mean is the p-value of the test
statistic under the null hypothesis; large p-values indicate better zero-mean
properties. Refer to section 4.4. The p-values are expressed as percentages.
The median average is employed.

specDiff. This is the mean squared log spectral difference between two model
spectrograms calculated according to the method and measure described in
section 4.2.

This terminology is adopted to explain tabular results throughout the report and
appendices. Two types of graphical results are also presented.

Parametric spectrograms of the noise model (the grey-scale is logarithmic).

Graphs showing how the sum-squared one-step ahead prediction errors vary
from one frame to the next, for various models and parameter estimation
techniques.
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6 Results and Discussion

Inaccurate modelling may be due to two causes: either a deficiency in the model
structure or a deficiency in the parameter estimation technique. Results and dis-
cussion are separated into four parts. In the first, deficiency in the model structure
is investigated for voiced speech. In the second, deficiency in the parameter es-
timation technique for voiced speech is investigated. The third part investigates
the modelling of non-voiced speech. In the final section, the results from previous
experiments are applied to the speech enhancement problem.

When comparing results and determining the accuracy of a model, three crite-
ria are used. The first is the magnitude, whiteness and zero-mean of the prediction
errors. The second is the shape of the noise model spectrograms. As explained by
Burrows [4] it is also vital to consider the frequency distribution of modelling er-
rors, because the ear is more perceptive to errors at certain frequencies than others
and can take advantage of masking effects. In this report this is achieved by com-
paring noise model spectrograms with non-parametric spectrograms and a priori
knowledge. Related to this is the third criterion: the predicted waveform. Informal
listening tests and non-parametric spectrograms of the predicted waveform can pro-
vide important and perceptually relevant information concerning model accuracy.
Often researchers pay attention to the first criterion only. This is particularly dan-
gerous because models with small prediction errors may not give perceptually the
best model.

6.1 Results Comparing Different Models For Voiced Speech

Inaccuracy due to a deficiency in model structure is investigated using voiced speech
only. Results from the following experiments are compared: ARMAX1-3, ARX1-3,
ARMA, OE1-3 and AR1-2. Terminology is explained in table 3. Because all these
models employ a common parameter estimation technique, that is PEM, it can be
assumed that differences in performance are due to differences in model structure
only. In practise however, differences in PEM algorithm implementation between
different model structures may contribute to model differences also. For example,
PEM is sometimes iterative, sometimes non-iterative. However the effects of these
algorithm differences are assumed small during a first analysis.

Figures 2 and 3 show how the sum-squared prediction errors per frame change
with frame number for various models, when applied to the analysis of clean and
noisy speech respectively. Tables 4 and 5 present a summary of the results. Models
are ranked in order of increasing median average sum-squared prediction errors.
Median whiteness and zero-mean results are also presented.

Rank model log,psse | whiteness | zero-mean
(%) (%)
1 ARMAXI1 5.75 1.26 46.51
2 ARX1 5.96 4.18 46.07
3 ARMA 6.07 1.26 93.37
4 AR2 6.15 4.18 93.00
5 OE1 7.74 28.87 5.27

Table 4: Models for clean voiced speech (in order of increasing prediction errors).
Prediction errors are analysed for sum-squared error, whiteness and zero-mean, with

median averages over all frames presented.
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Figure 2: Prediction errors for PEM models for clean voiced speech. They represent
the voiced sounds in “a small set of letters”.
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Figure 3: Prediction errors for PEM models for noisy voiced speech. They represent
the voiced sounds in “a small set of letters”.
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Rank model log,psse | whiteness | zero-mean
(%) (%)
1 ARMAX1 6.60 1.26 44.31
2 ARX1 6.71 2.51 41.38
3 ARMA 6.79 0.84 92.71
4 AR2 6.87 2.93 94.18
5 OE1 7.74 25.10 2.73

Table 5: Models for noisy voiced speech (in order of increasing prediction errors).
Prediction errors are analysed for sum-squared error, whiteness and zero-mean, with
median averages over all frames

In this section only one model from each model set is presented. For ARMAX,
ARX and OE this is the order 12 zero-sample delay model. For AR this is the model
with smallest prediction errors and is the covariance estimate. Refer to Appendix
4 for more complete results. The following observations are made:

In order of increasing prediction errors models are ARMAX1, ARX1, ARMA,
AR2 and OE]. This is true for both clean and noisy speech. Both tabular and
graphical results agree. Prediction errors generally increase in the presence of
noise as expected.

All models show prediction errors which are sufficiently white (less than 5 %)
and sufficiently zero-mean (greater than 5 %), which means that the whiteness
and zero-mean hypotheses are not rejected, except for the OE model. This
indicates that the OE model does not model sufficient speech dynamics.

ARMAX1, ARX1 and OE1 all model a deterministic glottal waveform input.
ARMAX1 and ARX1 perform well, whereas OE1 performs poorly. Therefore
the inclusion of deterministic input alone is not sufficient for small prediction
errors.

ARMAX1 and ARMA give a moving average (MA) structure to the noise,
allowing both process and observation noise to be modelled. AR2 and ARX1
model process noise only, whereas OE1 models observation noise only. Results
in clean conditions suggest that it is more important to model process noise
than observation noise. Whether this is the same for noisy speech would
depend on the signal-to-observation noise ratio. Smallest prediction errors
are given when both process and observation noise are modelled together.

Models with no deterministic input (ARMA and AR2) give largest p-values
for the zero-mean hypothesis.

Results were inconclusive as to whether a zero-sample delay or unit-sample
delay reduced prediction errors or not. Refer to Appendix 4 for results. There
are two possible reasons why a zero-delay between input and output may
exist. Firstly, it is physically possible for a speech process because experiments
consider a sampled representation of a continuous time process. Secondly, the
glottal and speech waveforms may be misaligned.
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Figure 4: Waveform and MatLab FFT-based spectrogram for clean voiced speech.
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Figure 5: Noise model spectrograms comparing PEM models for clean voiced speech
(same energy scaling). They represent the voiced sounds in “a small set of letters”.
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Figure 6: Waveform and MatLab FFT-based spectrogram for noisy voiced speech.
They represent the voiced sounds in “g small set of letters”.
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Figure 7: Noise model spectrograms comparing PEM models for noisy voiced speech
(same energy scaling). They represent the voiced sounds in “a small set of letters”.

33



Figures 5 and 7 show noise model parametric power spectrograms for clean
and noisy speech. For the sake of comparison, time-domain waveforms and non-
parametric output spectrograms are also shown in figures 4 and 6. All parametric
spectrograms are on the same energy scale. The non-parametric spectrograms are
determined using the MatLab specgram function and then converted to power spec-
tra. These spectrograms are however on a different scaling to the parametric ones
because they show output spectra rather than noise model spectra; refer to sec-
tion 4.2 for more details. Dark regions indicate high energy. Dark continuous
bands denote formant tracks which are evident on most voiced spectrograms. The
following observations are made

e All methods except OE1 (where the noise model for each frame is flat) produce
similar spectrograms. However ARMA and ARMAX1 are better at identifying
the two close formant tracks between 3kHz and 4kHz in the all sound. This
shows the advantage of a more general noise model.

e Although the OEL noise model spectrogram shows no detail, the transfer
function spectrogram does show spectral detail and formant structure.

¢ Among all the noise model spectrograms considered, ARMAX1 and ARX1
are most similar in the mean-squared log spectral difference sense. Numerical
values are detailed in Appendix 4.

The one-step-ahead predicted audio waveforms from the different models are
compared through informal listening tests and inspection of non-parametric spec-
trograms using the zwaves software. They give some very interesting results.

e In both clean and noisy conditions, ARMAX1 and OE1l waveforms contain
high pitch background musical noise, and sometimes ARMA also. Moreover
their non-parametric spectrograms contain relatively much high frequency
energy. Further investigation is required but the reason for this musical noise
is probably as given by Burrows [4]. She attributes the musical noise to
the frame-to-frame fluctuation in high-frequency formant estimates. In turn
this fluctuation is caused by the iterative parameter estimation algorithms
converging on local optima rather than global optima, and these local optima
vary between frames. (A side effect of these convergence problems is that high
frequency formants have unnaturally narrow bandwidths.) In summary, the
root cause of the musical noise seems to be due to a deficiency in the parameter
estimation algorithms rather than the models themselves. This is supported
by the fact that models with non-iterative PEM algorithms ie AR and ARX,
contain less or no musical noise and their formant tracks appear much steadier
at high frequencies; refer to figure 8. (Formant tracks are derived from the
phase of the complex poles of the model.)

e Although the ARMAX1 model gives smallest prediction errors, the predicted
waveform is perceptually poor. This demonstrates the danger of considering
prediction error as the only goodness-of-fit criterion for a model.

e AR2 and ARXI1 give predicted waveforms which perceptually differ little from
the original waveform.
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Figure 8: Formant frequency tracks comparing PEM models for clean voiced speech.
They represent the voiced sounds in “a small set of letters”.

Many large vocabulary speech recognition systems model speech using an AR
model and extract LP (linear prediction) or PLP (perceptual linear prediction)
coefficients. These results suggest that some useful information is lost by adopting
such a model, particularly a loss of sharpness and detail in the frequency domain.
Alternative models with more general noise models and/or with glottal waveform as
input would be advantageous (although computation would also increase). However
care must be taken when using iterative PEM algorithms as these may lead to
musical noise.

6.2 Results Comparing Different Parameter Estimation Tech-
niques for Voiced Speech

In the previous section, inaccuracy due to model deficiency was discussed. In this
section inaccuracy due to a deficiency in the parameter estimation technique is
discussed. Results from the following experiments are compared: ARMAX1 with
N4SID4, ARX1 with IV41, and AR1-2 with AR3. Terminology is explained in
table 3. These experiments allow comparison between PEM and 4SID, and PEM
and IV techniques. These are compared according to the three criteria listed in
section 6.1: prediction errors, noise model spectrograms and perceptual quality of
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the predicted waveform. Noise model spectrograms, time-domain waveforms and
non-parametric spectrograms are shown in figures 9 to 11 in a similar manner to
section 6.1. Parametric noise model spectrograms are all on the same energy scale,
but the non-parametric output spectrogram is on a different energy scale; refer to
section 4.2 for the reason.

6.2.1 PEM and 4SID

ARMAX and N4SID both model process noise, observation noise and glottal wave-
form input. Differences in performance are therefore primarily due to differences
in parameter estimation techniques: PEM and 4SID respectively. Only results for
ARMAX1 and 4SID4 are shown; these both correspond to an order 12 zero-sample
delay model with zero initial conditions. More complete results are given in Ap-
pendix 4.

Figures 13 and 14 show how the sum-squared prediction errors per frame change
for ARMAX1 and N4SID4 models for clean and noisy speech respectively. Table 6
presents a summary of these results.

Environment model log;,sse | whiteness | zero-mean
(%) (%)
Clean ARMAXI1 5.75 1.26 46.51
Clean N4SID4 6.06 2.51 66.95
Noisy ARMAX1 6.60 1.26 44.31
Noisy N4SID4 6.75 2.09 61.04

Table 6: Comparing PEM and 4SID for clean and noisy voiced speech. Prediction
errors are analysed for sum-squared value, whiteness and zero-mean, with median
averages over all frames presented.

¢ ARMAXI1 has smaller prediction errors than N4SID4. Both tabular and
graphical results agree.

e ARMAXI1 and N4SID4 both have prediction errors which are sufficiently white
(less than 5%) and sufficiently zero-mean (greater than 5 %), which means
that the whiteness and zero-mean hypotheses are not rejected.

e Both techniques show spectrograms with little spectral difference. Spectro-
grams for N4SID4 appear to show better formant tracks at low frequencies.
This may be due to a different frequency-domain weighting of modelling er-
rors.

e The ARMAXI1 predicted waveform contains high pitch musical noise, whereas
the N4SID4 waveform does not contain musical noise. A possible reason for
this is as discussed in section 6.1.

e In order of increasing median prediction errors, models are N4SID3, N4SID2,
N4SID4, N4SID1. Refer to Appendix 4 for complete results. These results
show that it is better to allow non-zero initial conditions on the state vector.
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Figure 9: Waveform and MatLab FFT-based spectrogram for clean voiced speech.
They represent the voiced sounds in “g small set of letters”.
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Figure 10: Noise model spectrograms comparing PEM, 4SID and IV estimation
methods for clean voiced speech (same energy scaling). They represent the voiced
sounds in “a small set of letters”.
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sounds in “a small set of letters”.

38



10 I ‘ 3
——  predicted ARMAX1 |
—--—-  predicted N4SID4
10°F 4
10 ! ]
’ E
|
S
10°F 1
10°F .
104 I I I I I I I
0 10 20 30 40 50 60 70 80 90

frame number

Figure 13: Prediction errors for PEM and 4SID estimation methods for an ARMAX
model on clean voiced speech. They represent the voiced sounds in “g small set of
letters”.
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Figure 14: Prediction errors for PEM and 4SID estimation methods for an ARMAX
model on noisy voiced speech. They represent the voiced sounds in “g small set of
letters”.
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A detailed comparison between PEM and 4SID, especially concerning modelling
errors and how these relate perceptually, will be left for a future report. Here some
brief comments concerning the differences are given.

Iteration. 4SID methods are single-step and non-iterative. PEM methods for
ARMAX, OE and ARMA models are iterative. Iterative methods suffer from the
usual problems of convergence to local rather than global optima, slow or lack of
convergence, sensitivity to initial conditions etc. Iterative algorithms seem to lead
to high pitch musical noise in the one-step-ahead predicted waveforms as evident
from these experiments.

Error Criterion. PEM methods minimise one-step-ahead prediction errors. 4SID
methods however minimise a weighted combination of 1-step to i-step prediction er-
rors, where 7 is the block size. In practice this means that 4SID methods distribute
modelling errors in the frequency domain in a different manner to PEM, and tend
to model low-frequencies better.

Numerical Stability. 4SID methods tend to use numerically robust algorithms
such as the SVD.

State Space Basis. 4SID methods operate on a state space basis which is frequency-
weighted balanced, whereas polynomial models operate on a companion parametri-
sation state space basis. Refer to section 2.8 for further details.

Bias. PEM gives unbiased estimates of parameters. 4SID may give solutions which
are unbiased or show a little bias, depending on the actual 4SID algorithm imple-
mented.

Instrumental Variables. 4SID methods remove the effects of noise by projecting
the model onto subspaces orthogonal to the noise subspace and show similarities to
instrumental variable (IV) methods [41]. 4SID therefore shows some properties of
both PEM and IV methods.

6.2.2 PEM and IV

ARX and IV4 both use the same autoregressive with exogenous inputs model. IV4
estimates parameters using a 4-stage IV algorithm. ARX on the other hand uses a
least-squares solution to an overdetermined set of linear equations. Differences in
performance are therefore primarily due to differences in the parameter estimation
technique.

AR1-2 and AR3 both use the same autoregressive model. Differences in per-
formance are primarily due to differences in parameter estimation technique: AR1
uses a least-squares autocorrelation method, AR2 uses a least-squares covariance
method, and AR3 uses an approximately optimal instrumental variable procedure
to estimate the AR-part of a time series.
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Figure 15: Prediction errors for PEM and IV estimation methods for an ARX model
on clean voiced speech. They represent the voiced sounds in “a small set of letters”.
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Figure 16: Prediction errors for PEM and IV estimation methods for an ARX model
on noisy voiced speech. They represent the voiced sounds in “a small set of letters”.
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Environment | model | log,,sse | whiteness | zero-mean
(%) (%)
Clean ARX1 5.96 4.18 46.07
Clean V41 6.57 13.39 72.43
Clean AR2 6.15 4.18 93.00
Clean AR3 6.79 9.62 95.05
Noisy ARX1 6.71 2.51 41.38
Noisy Iv41 7.49 11.72 81.28
Noisy AR2 6.87 2.93 94.18
Noisy AR3 7.62 8.79 96.79

Table 7: Comparing PEM and IV for clean and noisy voiced speech. Prediction
errors are analysed for sum-squared error, whiteness and zero-mean, with median
averages over all frames presented.

Noise model spectrograms are displayed in figures 10 and 12. The variation of
sum-squared prediction error with frame number is shown in figures 15 and 16 (for
ARX) and figures 17 and 18 (for AR methods). Table 7 presents median average
prediction errors, whiteness and zero-mean results in clean and noisy conditions.

e According to both tabular and graphical results, PEM methods give smaller
prediction errors than IV methods. This is because PEM methods aim to
minimise prediction errors, whereas IV methods aim to decorrelate prediction
errors and not necessarily minimise them; refer to section 3.2.

e Although PEM and IV both give prediction errors which are sufficiently zero-
mean (greater than 5 %), only PEM gives prediction errors which are suffi-
ciently white (less than 5 %). This means that the whiteness hypothesis for
IV is rejected. IV does not therefore model all the important dynamics in the
speech.

e Results from AR1 and AR2 show that there is little difference between the
performance of the autocorrelation and covariance methods. Refer to Ap-
pendix 4 for detailed results. Both methods are similar in that they use PEM
and determine A(q) according to

2]

A(q) = argy, min Y A(Qy(t) (56)

Jj=t1

where L is the frame length, n, is the order and an output sequence {y(1),...,y(L)}
is considered. However the autocorrelation and covariance methods differ with
respect to the summation limits. For the covariance method, t; = (ng + 1),

ta = L. For the autocorrelation method, t; = 1, t2 = (L + n,), which is
achieved by assuming samples before and after the frame are zero. There-

fore the covariance and autocorrelation methods differ only with respect to
end-effects. During these experiments, the frame size (240 samples) is rela-
tively large, and the frame is hamming windowed prior to analysis, meaning
end-effects are small. Therefore the two methods give similar results.
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e There is appreciable differences between ARX and IV4 spectrograms, and
AR1-2 and AR3 spectrograms as evident from the spectral differences listed
in Appendix 4 and the spectrograms displayed in figures 10 and 12. The PEM
methods produce much more consistent formant tracks than IV, although IV
produces sharper tracks. Both ARX and AR1-2 have spectrograms which are
more similar to ARMAX than IV4 and AR3 spectrograms.

e When considering the predicted waveforms for both clean and noisy speech,
IV methods tend to produce waveforms with very large occasional “clicks”,
relatively high frequency energy noise, and high pitch musical noise. Further
investigation is required to determine the reasons for these phenomena, but
may be due to algorithm convergence problems also.

e When derived from noisy speech, the one-step-ahead predicted waveform for
the AR2 model (covariance method) is “buzzy”. This demonstrates the well-
known fact that the AR covariance and autocorrelation methods are not ro-
bust to noise [17, 19, 29].

6.3 Experiments for Non-Voiced Speech

Non-voiced speech includes both unvoiced speech and silence. During the analysis of
non-voiced speech, only two models are assessed: ARMA and AR. Other models are
not possible due to an absence of deterministic input. ARMA and AR1-2 employ
a PEM parameter estimation technique, whereas AR3 employs an instrumental
variable technique.

A time-domain waveform, MatLab derived output power spectra and noise
model spectrograms are illustrated in figures 19 and 20. Energy scalings for the
parametric spectrograms are the same. However the scaling for the non-parametric
spectrogram is different because it measures output rather than noise models; refer
to section 4.2 for further details. Notice that the “t”s are stops and are preceded
by a short silence. Figures 21and 22 show the variation in sum-squared prediction
errors with frame number in clean and noisy conditions. Models are also presented
in tables 8 and 9 in order of increasing median average prediction errors. Median
average whiteness and zero-mean results are also given. More complete results and
spectral differences are presented in Appendix 4.

rank | model | log;,sse | whiteness | zero-mean
(%) (%)
1 ARMA 6.33 0.84 47.79
2 AR2 6.36 2.09 38.33
3 AR1 6.36 2.09 38.47
4 AR3 7.36 7.53 69.18

Table 8: Results for clean non-voiced speech. Prediction errors are analysed for
sum-squared error, whiteness and zero-mean, with median averages over all frames
presented.
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Figure 19: Waveform and MatLab FFT-based spectrogram for clean non-voiced
speech. They represent the non-voiced sounds in “a small set of letters”.
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Figure 20: Noise model spectrograms for non-voiced speech (same energy scal-
ing).They represent the non-voiced sounds in “a small set of letters”.
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Figure 21: Prediction errors for clean non-voiced speech. They represent the non-
voiced sounds in “a small set of letters”.
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Figure 22: Prediction errors for noisy non-voiced speech. They represent the non-
voiced sounds in “a small set of letters”.
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rank | model | log;,sse | whiteness | zero-mean

1 ARMA 6.72 1.26 39.48
2 AR2 6.74 1.67 36.04
3 AR1 6.74 1.67 36.00
4 AR3 7.49 7.53 75.33

Table 9: Results for noisy non-voiced speech. Prediction errors are analysed for
sum-squared error, whiteness and zero-mean, with median averages over all frames
presented.

e Prediction errors for ARMA are slightly smaller than those for AR1-2 showing
the benefits of a more general noise model. As expected, prediction errors for
both models are smallest for silence regions!

e ARMA and AR1-2 all show prediction errors which are sufficiently white (less
than 5%) and sufficiently zero-mean (greater than 5%), for the whiteness and
zero-mean hypotheses not to be rejected. However the whiteness hypothesis
is rejected for AR3. AR3 therefore does not model sufficient speech dynamics.

e Spectrograms generally show a lack of formant structure. Instead, for unvoiced
speech, energy seems to exist as high-frequency energy bands.

e In terms of the predicted waveforms, there is very little perceptual difference
between the ARMA and the AR2-3 model. The ARMA model does not seem
to suffer from musical noise during non-voiced speech.

e Both ARMA and AR1-2 have similar shaped spectrograms, whereas AR3 has
a large spectral difference. Refer to Appendix 4 for numerical values.

e AR1-2 shows smaller prediction errors than AR3. This agrees with previous
results that PEM minimises prediction errors better than the IV method.

These results for non-voiced speech are in general agreement with those for
voiced speech. When comparing results for voiced and non-voiced speech, errors
for non-voiced speech are greater, especially in clean environments. This shows
the difficulties in modelling the random nature of non-voiced speech. However it is
more difficult to compare directly non-voiced and voiced speech modelling in noisy
conditions. This is because non-voiced regions usually have lower local SNRs than
voiced regions when artificial noise is added uniformly across the whole spoken
phrase (as done in these experiments), because non-voiced regions are generally
lower in energy.

6.4 Results For Speech Enhancement

Speech corrupted by additive white Gaussian noise is filtered to remove the effects
of this noise using a Kalman filter. The algorithm is as follows.

1. Select a model set and estimate model parameters using the noisy speech.
2. Use the model parameters to initialise a Kalman filter.
3. Filter the noisy speech using the Kalman filter.

In this section, results from previous experiments are applied to the practical
problem of enhancing speech corrupted by 20 dB SNR additive white Gaussian
output noise. Parameter estimates for models derived during previous experiments
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on the noisy speech are used to initialise Kalman filters on a frame-by-frame basis,
which are then used to filter the noisy speech to produce noise-free estimates.

Kalman filters are discussed extensively in [2, 5, 10, 12]. Briefly, a Kalman filter
assumes a state space model in forward innovations form.

z(t+1) = Auz(t) +Bu(t) + Ke(t)
y(t) = Cz(t) + Du(t) + e(t)

Given system matrix estimates (A, B, C, D), process and observation noise covari-
ance estimates (Q, R), and initial condition estimates on the state vector and state
covariance matrix (xg,Pp), the Kalman filter estimates an optimal state sequence
{Z0(t),...,Z(N)}, where N is the number of samples. This is optimal in the sense
that it is the minimum variance estimate. The output waveform is reconstructed
using §xr = Cz(t) + Du(t). The accuracy of the reconstruction is measured using
the sum-squared filtered (innovations) error, and the whiteness and zero-mean of
these filtered errors.

During previous experiments, errors analysed are one-step-ahead prediction er-
rors: y(t) — §(t|t —1). These are generated by the MatLab predict function. During
enhancement, filter errors are also considered: y(t) — ¢(¢|t). These are generated
by the Kalman filter. Kalman filter errors are generally smaller than the one-step
ahead prediction errors, because the Kalman filter uses additional information at
time ¢ to improve the estimate y. Filter errors are up to one order of magnitude
smaller approximately than prediction errors.

During these experiments two criteria are used for comparison. The first cri-
terion is the magnitude, whiteness and zero-mean properties of the innovations.
Refer to table 10 for analyses of prediction and filter errors for significant models
from previous experiments. The second criterion is the perceptual quality of the
filtered speech, through informal listening tests and inspection of filtered speech
non-parametric output spectrograms. Spectrograms of clean, noisy and enhanced
speech using a Kalman filter initialised using AR2 are show in figures 23, 24 and 25.
These spectrograms are FFT-based and are generated using the zwaves software.
The following observations are made

e Kalman filtering tends to reduce differences in performance between different
models and parameter estimation techniques. Whereas models have a clear
hierarchy of ARMAX, ARX, ARMA, AR and OE for the one-step-ahead-
predictor, no such clear hierarchy exists for the filter. Why the use of the filter
reduces the variation of reconstruction error among different model types is
not known. OE however is a noticeable exception. This is because the OE
model assumes no process noise, and therefore gives poor estimates of system
matrices for the Kalman filter.

e The Kalman filter tends to decrease the zero-mean and whiteness properties
of the residual. The reason for this is not yet known. When the whiteness
exceeds 5 % and the zero-mean reduces to below 5 %, then the whiteness
and zero-mean hypotheses respectively can be rejected at the 5 % significance
level.

¢ When listening to the filtered waveforms, Kalman filtering generally removes
the observation noise well, while introducing little or no perceptual distortion
into the signal. The filter removes much of the broadband high frequency noise
especially. Musical noise evident in the one-step-ahead predicted waveform is
no longer present in the filtered waveform. Exceptions are OE1l and AR3
models which agree with numerical results listed in table 10.
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Small reconstruction errors suggests possible applications of the technique to speech
coding. Although in its present set-up the Kalman filter is suited to the removal
of white observation noise only, the state space can be augmented to allow coloured
observation noise to be considered also [10].

Environment Model log, o (sse) whiteness (%) | zero-mean (%)
predict | filter | predict | filter | predict | filter

clean ARMAX1 5.75 5.09 1.26 4.18 46.51 | 39.97
clean N4SID3 5.95 4.95 3.35 8.37 57.76 | 39.58
clean ARX1 5.96 5.16 4.18 7.11 46.07 | 36.22
clean Iv41 6.57 5.04 13.39 | 12.97 | 72.43 | 24.24
clean OE1 7.74 7.72 28.87 | 29.71 5.27 6.53
clean ARMA 6.07 5.03 1.26 5.44 93.37 | 81.53
clean AR2 6.15 5.16 4.18 10.04 | 93.00 | 77.96
noisy ARMAX1 6.60 6.21 1.26 5.44 44.31 30.00
noisy N4SID3 6.72 6.19 2.09 6.69 55.84 | 48.05
noisy ARX1 6.71 6.25 2.51 6.69 41.38 | 23.80
noisy Iv41 7.49 6.31 11.72 4.18 81.28 | 38.38
noisy OE1l 7.74 7.74 25.10 | 25.94 2.73 3.54
noisy ARMA 6.79 6.25 0.84 6.69 92.71 | 46.00
noisy AR2 6.87 6.27 2.93 7.95 94.18 | 50.44

Table 10: Results when analysing clean and noisy voiced speech. Prediction and
Kalman filter innovations are analysed for sum-squared error, whiteness and zero-
mean, with median averages over all frames considered.
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Time: 0.3420 Freq: 6500.00 Value: 47  D:0.05600 L: 0.62200 R: 0.67800 (F: 17.86)

Figure 23: zwaves spectrogram for a small set of letters (clean speech).

Time: 0.7480 Freq: 2500.00 Vaue: 66 D:0.05600 L: 0.62200 R: 0.67800 (F: 17.86)

Figure 24: zwaves spectrogram for a small set of letters (noisy speech with global
20dB SNR). Noise is additive white Gaussian.
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Figure 25: zwaves spectrogram for a small set of letters (enhanced speech using a
Kalman filter initialised with the AR2 model from the noisy speech).
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7 Future Work

Results from these experiments show that knowledge of the human speech produc-
tion and speech perception processes is helpful in model set selection and parame-
ter estimation respectively. Future research will investigate speech production and
speech perception in more detail to determine how such knowledge can best be
used in the system identification problem. On the frame level, particular modelling
challenges include modelling of rapidly changing sounds such as plosives, glides and
onsets. Multi-modelling approaches for the separate modelling of different sound
classes may be of interest. On the phoneme level, particular modelling challenges
include the introduction of time constraints on the time evolution of formants and
spectrograms to reduce musical noise, perhaps by means of a high-level speech
model. Particular perception challenges include weighting modelling errors in the
frequency domain so as to take advantage of masking, the cochlea filter-banks per-
ception model, and the variation of the sensitivity of the ear to frequency.

Therefore it is also necessary to understand the frequency distribution of mod-
elling errors for PEM, IV and 4SID, and the factors which affect these distributions.
Factors include but may not be limited to prefiltering, input signal power spectra,
prediction horizon and sampling rate [21, 42]. The effects and merits of preempha-
sis, a popular speech preprocessing procedure, in relation to these techniques and
various models should also be understood.

Of particular interest are the 4SID algorithms. These have the advantage that
they model an ARMAX model, allow state vector initial conditions to be readily
estimated as part of the N4SID algorithm, allow noise or insignificant signal modes
to be rejected in a better fashion, and do not appear to suffer from musical noise
problems. This may be due to the fact that these algorithms tend to locate global
optima better than PEM methods, or that they are non-iterative or that they use
a different weighting on prediction errors.

The Kalman filter (initialised using PEM, IV or 4SID) has been successfully
used for the speech enhancement problem. However the performance of the filter
appears to be fairly insensitive to the choice of initialisation algorithm, provided it
is reasonable. Further investigation is required. Also 4SID parameter estimation
techniques have an elegant relationship with Kalman filter theory [35, 39], which
would be worthwhile considering further in the speech enhancement problem.

Further investigation into the effects of improved speech modelling on the en-
hancement of coloured or non-stationary noise, speech coding, feature extraction
and speech recognition is also worthwhile.

8 Conclusions

It is useful to consider both polynomial and state space models within a common
state space framework because this makes explicit the assumptions which models
make regarding process noise, observations noise and the structure of system ma-
trices. Results can be divided into those related to the model, and those related to
the parameter estimation technique.

Models in decreasing performance are ARMAX, ARX, ARMA, AR and OE
where performance is measured in terms of the prediction errors and noise model
spectrograms. Glottal waveform input, a general noise model and non-zero initial
conditions on the state vector all reduce prediction errors. The lack of a general
noise model (such as for AR, ARX and OE) increases prediction errors and reduces
the clarity of spectrograms. However there is little evidence to suggest whether
modelling is improved by having a zero-sample time delay between input and output.

PEM, 4SID and IV parameter estimates are compared. PEM methods give
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smaller prediction errors than 4SID and IV. But 4SID predicted waveforms have
better perceptual qualities and noise model spectrograms show more detail at low
frequencies (this may be due to a different frequency domain weighting of mod-
elling errors). Also 4SID has the advantage that it is non-iterative, can readily
estimate non-zero initial conditions and lends itself in a better manner to low order
approximation and rejection of insignificant signal modes or noise modes by simple
truncation of system matrices. IV tends to give sharper spectrograms but spectra
show inconsistency from one frame to the next. Iterative PEM algorithms and IV
seem to suffer from high pitch musical noise effects.

Results for non-voiced and voiced speech in clean conditions are similar, except
prediction errors are generally larger for non-voiced speech due to the random nature
of the system input.

Speech modelling is applied to the practical problem of speech enhancement in
white additive Gaussian observation noise, using a Kalman filter initialised from
noisy speech. The filter produces similar reconstruction errors for all models and
parameter estimation techniques except IV techniques and the OE model (proba-
bly due to unreasonable initial parameter estimates due to the deficiency of the OE
model). The enhanced speech shows good perceptual qualities and lack of distortion
except for OE and IV.

Acknowledgements Gavin Smith is grateful for funding and support from the Schiff
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filter software of Zoubin Ghahramani www.gatsby.ucl.ac.uk/ zoubin/.
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9 Appendices

9.1 Appendix 1 — Polynomial Models in State Space Form

Consider a combined deterministic-stochastic system in forward innovations form,
with state space order 3. The derivation herein can readily be extended to higher
orders, but is kept to order 3 for simplicity.

z(t+1) = Az(t)+Bu(t) + Ke(?)
y(t) = Cz(t) + Du(t) + e(t)

For the transition equation define matrices as

z1(t) —a; 1 0 by k1
1:(t) = T2 (t) A= —as 01 B = b2 K= k2
I3 (t) —as 00 b3 k3
For the observation or measurement equation define matrices as
C=01 0 0 D=k
Now combine transition and observation equations together
[z (t+1) ] [ —a; 1 0 1 (t) [ by ] [ k1 ]
z2(t +1) = —a; 0 1 z2(t) + by | u(t) + ka | e(t)
| .’1,‘3(t+ 1) i | —as 0 0 l‘3(t) b3 i k3 i
[ .’Bl(t + ].) i [ —al$1(t) -+ $2(t) [ by ] [ k1 T
X2 (t + ].) = —a2%1 (t) + 3 (t) + by u(t) + ko e(t)
| .’L‘3(t+ ].) i | —a3$1(t) b3 i ks i

From the observation equation

z1(t) = y(t) — bou(t) — e(t)

Substituting this into the above equation and eliminating z5(¢) and z3(t) by re-
peated substitution yields the following:

z1(t+ 1) [ —a; —as —as3 y(t) —  bou(t) - et
z2(t + 1) = —az —az3 O yt—1) — bou(t—1) — e(t—1)
z3(t+ 1) | —a3 0 0 yt—2) — bou(t—2) — e(t—2)
[ bl bz b3 u(t) kl kz k3 e(t)
+ by b3 O u(t — ].) + ke ks O e(t — 1)
| 55 0 0 | [ u(t—2) ks 0 0 e(t—2)

Note that the matrices are Toeplitz. Expanding the first line and substituting for
z1(t + 1) on the left-hand side of the equation gives
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y(t) = bout) - e(t)
y(t+1) —bou(t+1) —e(t+1) = [ —a1 —a2 —asg | yt—1) — bou(t—1) — e(t—1)
yt—2) — bou(t—2) — e(t—2)

u(t)
—|—[b1 by b3:| ’Lt(t—].)
| u(t—2) |

e(t)
+ [ ki ke k3 ] e(t - 1)
[ e(t—-2) |

Reorganising this gives

[1 a1 a2 a3 ] y(?f(f)n = [bo (bs+boar) (b2+boaz) (bz+boas) ] u(t—1)

+ [1 ai +ki as+ ko a3+k3] e(t—l)

This can be written in familiar polynomial form as

A(Q)y(t) = Blgu(t) + Clg)e(?)

where polynomials are defined as

A(Q) = 1 + 25:1 a;
Blg) = bo + Yy (bi+boas)
Clg) = 1 + Yi(ki+a)

In many cases of polynomial modelling, D = 0, which means by = 0. This simplifies
the expression for the B(g) polynomial especially.
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9.2 Appendix 2 — The DOA Model

A brief overview of the DOA methods are given. One of the reasons for this is
because DOA methods can be seen as a subset of the more general 45ID methods.
Consider the state space system in block matrix form as described in section 2.6.

X; = A'X,+AJU,+ A"E,
Y, = I;X,+H/U,+HYE,
Y; = TIX;+H{U; +HYE;

The DOA model is a state space system with no deterministic input and no process
noise. These equations can therefore be simplified further, noting that H}’ reduces
to the identity matrix and A}" reduces to zero.

X; = A'X,
Y, = T\X,+E,
Y; = IX;+E;

Consider now the sample correlation matrix of Y, where the Hermitian transpose
H is used because matrices may contain complex components.

YpYzl;I = IX,TiX, + Ep)H
+E,(T;X, + E,)#

If innovations are assumed white and uncorrelated with the states and the innova-
tions, then E,EX = 021 and X,EJ = 0 respectively, where o7 is the variance of
the innovations process or observation noise. Therefore

Y, Y = DX, XHTF 40201

This final equation can be recognised as the fundamental equation for the signal
processing algorithms to solve the direction-of-arrival problem, and in estimating
damped sinusoids in noisy conditions [20, 26, 34]. These include algorithms such as
ESPRIT, MUSIC, MODE and WSF.

Furthermore the correlation matrix can be decomposed such that the observ-
ability matrix I'; has Vandermonde structure. This corresponds to a uniform and
linear array for the direction-of-arrival problem.

1 1 ... 1
e*t e?2 . e?r
2z 2z 2z ]
Y, - o2 22 . e [ 2(0) (1) ... a(—1) ]
e(z;'l) z1 e(i*.l) 2, e("’.l) =
= rv,ixv,p + EP

where ¢ is the block size and the , subscript denotes matrices relating to the Van-
dermonde structure. The output can be written as a sum of decaying exponentials
in additive observation noise.
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p

yt) = va,p(z’,t)ez“—”+e(t)

i=1

z; = (jw; — ;) is a system pole where w; and «; are the frequency and one-sided
bandwidth (or damping rate) respectively. X, , is a state sequence which contains
the amplitudes of the decaying exponentials. In this example, C = [1,1,...,1] and
A = diag(e*i,e®i ... e*r)

Therefore traditional DOA methods operate on the block matrix form of a state
space system, where process noise and deterministic inputs are zero. DOA methods
can therefore be considered a subset of the more general 4SID methods. Now,
different parameter estimation algorithms will be briefly considered.

Parameter Estimation Algorithms

There are a variety of subspace algorithms to solve the DOA problem. Large sample
realizations of the maximum likelihood (ML) estimate are given in table 11 where
noise is assumed white and temporally and spatially white. However these ML
objective functions are highly nonlinear and multimodal. Therefore assumptions
and approximations can be made to these criteria which results in many of the
popular DOA algorithms such as MUSIC, ESPRIT, WSF and MODE. Refer to
[31, 32, 40] for derivations and [29] for an overview.

Criterion | Optimisation Citation

la 0 = arge min||Y, — T'y,:(0)X,,,(0)||% [40]
1b 0 = arge max tr{Ilr, (G)ftyy}, Xyp = I‘I’iYU,p [40]

~

2 0 = argg min tr{T, ;(6)7 U, UHT, ;(§)Rxx(0)} [31]

Table 11: DOA Maximum Likelihood Estimation Criteria

Matrices are defined as

o Rxx(0) = £X,,X is the sample correlation matrix of the state sequence.
e Ryy = LY, Y is the sample correlation matrix of the output.

e U, is a matrix whose columns are eigenvectors of Ryy

e I, (0) = Ty i(0)Ty,:(0)" = Ty {TH(O)T,,:(6)}'TF;(6) is the projection
matrix onto the column space of T’y ;.

Criterion la attempts to align the column space of the extended observability
matrix with the column space of the data, and is therefore a subspace fitting prob-
lem. Joint optimisation over both I',, ; and X, , is required. As with most 4SID
problems, this optimisation is separable. Setting X, , = I‘Z,ti means that the
optimisation can be separated into two stages which gives criterion 1b. Finally
criterion 2 attempts to make the extended observability matrix column space as
orthogonal as possible to the output sample correlation matrix noise subspace.
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9.3 Appendix 3 — Projection Theory

The first step in subspace algorithms is to project a matrix onto a given subspace.
Two projectors are used depending on the algorithm, termed the orthogonal and
oblique projectors. T denotes the Moore-Penrose inverse, and * the orthogonal
space. Consider matrices S and R with row spaces § and R respectively.

e A/G is the orthogonal projection of A onto S.

A/6 = AST(ssT)is
= Allg

e A/RG is the oblique projection of A onto S along R.

A/rG = (A/R)(S/RM)'S

When R = 0 or when R is orthogonal to S, the oblique projection reduces to an
orthogonal projection.

A/R6 = A/6
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9.4 Appendix 4 — Further Experimental Results

Experiments on Clean Voiced Speech

Model log;o(sse) whiteness (%) | zero-mean (%)
predict | filter | predict | filter | predict | filter

ARMAX1 5.75 5.09 1.26 4.18 | 46.51 | 39.97
ARMAX?2 5.86 5.05 1.26 5.44 30.83 | 15.18
ARMAXS3 5.87 5.05 1.26 5.02 28.28 | 19.46

N4SID1 6.10 5.27 2.51 6.28 | 47.87 | 35.82
N4SID2 6.04 5.10 2.93 7.11 44.27 | 28.21
N4SID3 5.95 4.95 3.35 837 | 57.76 | 39.58
N4SID4 6.06 5.31 2.51 6.28 66.95 | 48.39

ARX1 5.96 5.16 4.18 7.11 46.07 | 36.22
ARX2 6.02 5.13 3.77 8.37 31.76 | 13.26
ARX3 6.02 5.13 3.77 7.95 39.39 | 18.29

Iv41 6.57 5.04 | 13.39 | 1297 | 72.43 | 24.24
1V42 6.53 5.05 | 12.97 | 12.55 | 53.40 | 13.59
Iv43 6.52 4.96 | 12.13 | 12.97 | 48.64 | 13.60
OE1 7.74 7.72 | 28.87 | 29.71 5.27 6.53
OE2 7.75 773 | 28.87 | 29.29 2.73 2.51
OE3 7.70 7.68 | 28.87 | 28.87 5.78 7.72

ARMA 6.07 5.03 1.26 5.44 | 93.37 | 81.53

AR1 6.19 5.20 4.60 10.04 | 93.00 | 78.24
AR2 6.15 5.16 4.18 10.04 | 93.00 | 77.96
AR3 6.79 5.18 9.62 15.90 | 95.05 | 69.64

Table 12: Results when analysing clean voiced speech. Prediction and Kalman
filter innovations are analysed for sum-squared error, whiteness and zero-mean,
with median averages over all frames presented.
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model specDiff

ARMAX1 | N4SID3 | ARX1 | Iv41l | OE1 | ARMA | AR2
ARMAX1 9.46 9.39 | 10.86 | 9.81 10.81 | 10.13
ARMAX?2 9.60 9.78 9.72 | 10.88 | 9.98 10.81 | 10.12
ARMAX3 9.79 9.90 9.86 | 10.89 | 10.06 | 10.82 | 10.17
N4SID1 9.54 9.42 9.63 | 10.87 | 9.91 10.81 | 10.13
N4SID2 9.45 9.19 9.54 | 10.87 | 9.85 10.81 | 10.14
N4SID3 9.46 9.46 | 10.86 | 9.76 10.82 | 10.17
N4SID4 9.50 9.13 9.56 | 10.87 | 9.85 10.81 | 10.15
ARX1 9.39 9.46 10.86 | 9.73 10.82 | 10.14
ARX2 9.61 9.69 9.43 | 10.87 | 9.87 10.83 | 10.16
ARX3 9.65 9.72 9.50 | 10.87 | 9.89 10.83 | 10.17
Iv4l 10.86 10.86 10.86 10.87 | 11.13 | 10.92
Iv42 11.18 11.18 11.18 | 11.28 | 11.18 | 11.32 | 11.21
Iv43 10.73 10.73 10.72 | 11.06 | 10.75 | 11.05 | 10.79
OEl 9.81 9.76 9.73 | 10.87 10.85 | 10.26
OE2 10.10 10.07 10.06 | 10.90 | 9.80 10.88 | 10.39
OE3 9.85 9.80 9.77 | 10.87 | 8.98 10.85 | 10.27
ARMA 10.81 10.82 10.82 | 11.13 | 10.85 10.76
AR1 10.08 10.13 10.09 | 10.91 | 10.22 | 10.76 | 9.29

AR2 10.13 10.17 10.14 | 10.92 | 10.26 | 10.76
AR3 11.25 11.25 11.25 | 11.38 | 11.26 | 11.33 | 11.24

Table 13: Results when analysing clean voiced speech. log;, mean squared spectral

differences between noise model spectrograms.
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Experiments on Noisy Voiced Speech

Model log,, (sse) whiteness (%) | zero-mean (%)
predict | filter | predict | filter | predict | filter
ARMAX1 6.60 6.21 1.26 5.44 44.31 | 30.00
ARMAX2 6.62 6.23 1.26 5.86 33.54 | 20.17
ARMAX3 6.63 6.23 1.26 5.86 32.20 | 21.70

N4SID1 6.78 6.25 2.09 6.69 58.12 | 35.57
N4SID2 6.74 6.20 2.09 6.69 | 48.88 | 32.85
N4SID3 6.72 6.19 2.09 6.69 55.84 | 48.05
N4SID4 6.75 6.24 2.09 6.28 61.04 | 43.16

ARX1 6.71 6.25 2.51 6.69 | 41.38 | 23.80
ARX2 6.73 6.25 2.51 7.11 31.88 | 20.56
ARX3 6.73 6.26 2.93 7.53 36.81 | 20.65

Iv41 7.49 6.31 11.72 | 4.18 81.28 | 38.38
V42 7.59 6.29 | 11.30 | 4.60 72.75 | 32.01
Iv43 7.39 6.30 | 10.88 5.02 71.24 | 26.10
OEl1 7.74 7.74 | 25.10 | 25.94 2.73 3.54
OE2 7.78 7.76 | 26.36 | 27.20 2.34 5.08
OE3 7.76 7.74 | 28.03 | 29.71 6.92 6.37

ARMA 6.79 6.25 0.84 6.69 92.71 | 46.00

AR1 6.87 6.27 2.93 7.95 94.16 | 50.44
AR2 6.87 6.27 2.93 7.95 94.18 | 50.44
AR3 7.62 6.29 8.79 5.86 96.79 | 63.12

Table 14: Results when analysing noisy voiced speech. Prediction and Kalman
filter innovations are analysed for sum-squared error, whiteness and zero-mean,
with median averages over all frames presented.
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model specDiff

ARMAX1 | N4SID3 | ARX1 | Iv41l | OE1 | ARMA | AR2
ARMAX1 9.41 9.30 | 11.26 | 10.10 | 10.46 | 10.12
ARMAX?2 9.37 9.62 9.52 | 11.26 | 10.15 | 10.45 | 10.11
ARMAX3 9.64 9.76 9.70 | 11.27 | 10.20 | 10.47 | 10.15
N4SID1 9.48 9.24 9.55 | 11.26 | 10.15 | 10.45 | 10.11
N4SID2 9.42 9.04 9.50 | 11.26 | 10.13 | 10.46 | 10.12
N4SID3 9.41 9.46 | 11.26 | 10.10 | 10.47 | 10.15
N4SID4 9.42 8.87 9.50 | 11.26 | 10.12 | 10.46 | 10.13
ARX1 9.30 9.46 11.26 | 10.09 | 10.46 | 10.12
ARX2 9.52 9.63 9.25 | 11.26 | 10.14 | 10.47 | 10.12
ARX3 9.56 9.66 9.35 | 11.26 | 10.15 | 10.48 | 10.14
Iv4l 11.26 11.26 11.26 11.28 | 11.31 | 11.27
Iv42 11.24 11.25 11.24 | 11.17 | 11.26 | 11.29 | 11.25
Iv43 11.42 11.42 1142 | 11.63 | 11.43 | 11.45 | 11.43
OE1 10.10 10.10 10.09 | 11.28 10.60 | 10.38
OE2 10.01 10.02 10.00 | 11.28 | 9.77 10.58 | 10.35
OE3 9.78 9.78 9.76 | 11.27 | 9.88 10.53 | 10.26
ARMA 10.46 10.47 10.46 | 11.31 | 10.60 10.36
AR1 10.07 10.10 10.07 | 11.27 | 10.36 | 10.36 | 9.20

AR2 10.12 10.15 10.12 | 11.27 | 10.38 | 10.36
AR3 12.07 12.07 12.07 | 12.05 | 12.08 | 12.08 | 12.07

Table 15: Results when analysing noisy voiced speech. log;, mean squared spectral
differences between noise model spectrograms.

Experiments on Clean Non-Voiced Speech

Model log; (sse) whiteness (%) | zero-mean (%)
predict | filter | predict | filter | predict | filter

ARMA 6.33 5.71 0.84 4.18 | 47.79 | 52.63

AR1 6.36 5.78 2.09 5.44 | 38.33 | 52.77
AR2 6.36 5.78 2.09 5.44 | 38.47 | 52.71
AR3 7.36 5.39 7.53 9.21 | 69.18 | 56.90

Table 16: Results when analysing clean non-voiced speech. Prediction and Kalman
filter innovations are analysed for sum-squared error, whiteness and zero-mean, with
median averages over all frames presented.
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Model specDiff
ARMA | AR1 | AR2 | AR3

ARMA 8.79 | 8.79 | 1041
AR1 8.79 8.19 | 1041
AR2 8.79 8.19 10.41

AR3 10.41 | 10.41 | 10.41

Table 17: Results when analysing clean non-voiced speech. log;, mean squared
spectral differences between noise model spectrograms.

Experiments on Noisy Non-Voiced Speech

Model log10(sse) whiteness (%) | zero-mean (%)
predict | filter | predict | filter | predict | filter

ARMA 6.72 6.32 1.26 7.11 | 39.48 | 42.65

AR1 6.74 6.37 1.67 7.95 | 36.04 | 42.78
AR2 6.74 6.37 1.67 7.95 | 36.00 | 42.76
AR3 7.49 6.29 7.53 5.44 | 75.33 | 49.97

Table 18: Results when analysing noisy non-voiced speech. Prediction and Kalman
filter innovations are analysed for sum-squared error, whiteness and zero-mean, with
median averages over all frames presented.

Model specDiff
ARMA | AR1 | AR2 | AR3
ARMA 8.81 | 882 | 10.94
AR1 8.81 8.21 | 10.94
AR2 8.82 8.21 10.94

AR3 10.94 | 10.94 | 10.94

Table 19: Results when analysing noisy non-voiced speech. log,;, mean squared
spectral differences between noise model spectrograms.
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