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ABSTRACT

Speaker normalisation remains a very significant problem in
speech research. One of the most immediate applications for
a solution would be in the area of multiple-speaker speech
recognition systems. These systems are faced with the task
of assigning phonetic labels to portions of input speech, a task
which is extremely complicated due to the enormous amount
of variability within a phonetic class. Finding a good nor-
malisation transformation would reduce this variability. The-
oretical aspects of speech related studies would also benefit
from a normalisation solution as it should lead to a greater
understanding of the essential acoustic correlates that define a
sound. A solution would aid researchers in the areas of per-
ception and psycholinguistics. Normalisation techniques could
also contribute to speech synthesis applications, especially in
the area of producing multiple voices. This paper describes a
frequency domain shift function which reduces the amount of
inter-speaker variance within a phonetic class. The shift func-
tion is dependent upon the speaker’s geometric mean pitch.
The shift function is easily parameterised in a piece-wise lin-
ear fashion. Application of the shift allows a 15.8 - 17.0%
reduction of variance. This reduction falls within 0.2% of the
optimal pitch-only shift function for the data studied. In ad-
dition to variance reduction and recognition applications, this
shift is easily applied as a means for warping speaker qual-
ity. This technique is applicable to synthesis systems where
multiple voice qualities are desired.

1. INTRODUCTION

The scope of the speaker normalisation problem is vast. Men,
women and children have physiologically very different vocal
apparatus, and thus produce very different acoustic realisa-
tions of the same sound. Despite these different realisations,
listeners are usually able to perceive and classify the sounds
correctly. It is commonly accepted that in order to make this
classification, the auditory system must make use of a trans-
formation or series of transformations to the input signal in
order to yield the correct phonetic assignment. Determining
this exact transformation continues to elude researchers. This
transformation seems to be dependent upon a number of in-
terrelating factors including phonetic context, dialect, speaker
pitch and acoustic stress. Ideally, a model unifying all these
variables is needed. Before such a model can be found, it is
instructive to study each of these factors individually. This
paper focuses specifically on speaker pitch.

In this paper a new frequency shift function for reducing
inter-speaker variance is explored. The next section will sur-
vey previous speaker normalisation work. The following sec-
tions will then present Miller’s audio-perceptual theory [1] and
examine how well his shift function reduces variance. In Sec-
tion 5 a new shift function will be developed. Finally, Section
6 will present applications of the shift function and offer con-
clusions.

2. PREVIOUS WORK

An underlying question in speaker normalisation seems to be
how speech sounds produced by varied vocal tracts can be per-
ceived as “equivalent”? Some researchers are trying to answer
this question by studying the perception of speech in the hope
that understanding this problem will lead to insights into the
type of auditory transformation humans perform on speech sig-
nals. These studies have also been used to support arguments
regarding which portions of the speech signal are utilised in
perception. The accepted viewpoint in the speech recognition
community is that formants alone provide insufficient informa-
tion for perception and that the entire short-term spectrum
must be used in recognition. In [2], Bladon argues this case.
Bladon’s belief that formants alone are inadequate for percep-
tion has led him to work on a normalisation scheme involving
a transformation of the entire spectrum [3]. His theory in-
volves taking the entire short term spectra through a series of
transformations to yield a pseudo-auditory spectra calibrated
in sones/Bark versus Bark units. The resultant pseudo-spectra
can then be used to normalise male and female speakers by a
linear displacement on the Bark scale. However, the linear
displacement required varied depending on the language and
dialect under consideration [4].

Holmes [5] investigated the effect of the Bark scale frequency
shift by synthesising data with various shifts ranging from 0.5
to 2.0 Barks. He found no obvious phonetic difference between
the examples but claimed that the female voice quality was
greatly inferior to that of the male. He felt that this inferiority
may be due to either the inadequacy of a simple Bark shift
to account for male and female differences, or that unaltered
formant amplitudes could not represent correctly the results of
a female glottal pulse.

Klatt [6] also performed a series of experiments in which
parameters to synthesise speech were varied. Among the var-
ied parameters were spectral tilt, relative formant amplitudes,
high-pass, low-pass and notch-filtering, all of which turned out
to have little phonetic relevance. He found that the most im-
portant variable in perception is the location of formant fre-
quencies. These observations seem to indicate that one means
of normalising between speakers is to find a method which re-
duces the variance in the location of their formant frequencies.
This tack has been adopted by many researchers.

Many speaker normalisation efforts use the work of Peter-
son and Barney [7] as a starting point. Their work showed how
the formant frequencies in the simple monophthongal vowels
in a single context displayed considerable scatter. Attempts at
reducing the scatter in vowel space has taken various forms.
For example, Gerstman [8] normalised F1 and F2 frequen-
cies by defining a range between the maximum and minimum
F1 and F2 frequencies for each speaker. F1 and F2 frequen-
cies were then linearly normalised based on these determined
ranges. The normalised F1 and F2 values were then used in
a vowel classification algorithm with improved results over un-
normalised values. Another method for reducing the scatter
between formant frequency values was developed by Wakita
[9]. His method of normalising vowels used the length of the
speaker’s vocal tract. This length was determined automati-



cally by solving linear prediction equations. Wakita’s system
is based on the assumption that for a given context, differ-
ent speakers pronounce the same phoneme by having simi-
lar vocal tract configurations whose main difference is only
in length. Thus, normalising the configurations to a reference
length without altering the shapes should yield a set of very
similar vocal-tract shapes for each vowel. This would then cor-
respond to a smaller distribution of formant frequencies for a
given vowel.

As Klatt’s work has shown, formant frequencies are ex-
tremely important in perception, and yet, examining plots of
F1 versus F2 (even after using normalisation techniques as
described above) shows considerable overlap between vowels.
The human perceptual system, as Bladon has suggested, must
certainly be utilising more information than just formant fre-
quency locations in performing the discrimination task. Many
researchers have suggested that pitch is one of the additional
factors that helps the listener to discriminate correctly between
sounds. Potter and Steinberg [10] related formants to pitch.
Fujisaki and Kawashima [11] have studied the role of pitch and
higher formants on vowel perception and have found that per-
ceptual normalisation is not complete unless both these factors
are varied. Further evidence of pitch’s importance is offered in
the work of Traunmuller [12]. His research studied the percep-
tual relationship between one formant vowels and systematic
variances of the pitch. His results showed that perception of
the vowel quality varied with changes in pitch frequency.

3. THE AUDITORY-PERCEPTUAL THEORY

Another normalisation theory which combines the importance
of formant locations and fundamental frequency with a theory
on speech perception is found in the auditory-perceptual work
of Miller. Simply stated, Miller’s work implies that normalisa-
tion can be done by shifting frequency components by a factor
proportional to the cube root of a speaker’s geometric mean
fundamental frequency (GMFO0). His work descends from prior
research with formant-ratio theories which state that the ratios
between adjacent formant values (F2 to F1 and F3 to F2) can
be used to indicate the identity of a vowel. These formant-ratio
theories have been shown to reduce inter-speaker differences
such as age and gender. However, one of the major weaknesses
of theories based on formant-ratio methods is their inability to
distinguish between some vowel pairs (for example, /aa/ and
/ao/, and /uh/ and /uw/) because the vowel pairs produce
very similar ratios.

In Miller’s theory, input speech waveforms are transformed
into short-term spectral analyses. From these short term spec-
tra, four sensory pointers are derived. Three of these point-
ers, SF'1, SF2, and SF3, correspond to the first three formant
frequencies. A fourth pointer, called SR, is derived from the
speaker’s pitch and is defined as.

[GMFo
SR=GMFQ,,{] ——*= 1
*\ GMFO.. (1)

where GM FO0.; is the geometric mean of a “standard”
speaker’s pitch and GM F0.; is the geometric mean of the cur-
rent speaker’s pitch. Miller defines the standard speaker’s ge-
ometric mean pitch to be 168.0 Hz (on the basis that 168.0 is
the geometric mean of the average adult male pitch, 125 Hz,
and the average adult female pitch, 225 Hz). The four pointers
are then used to calculate three new variables as follows:

SF1
y =log SF1 —log SR = log R (2)
SF2
=log SF2 —log SF1 =log —— 3
z =log og 8 o F 3)
SF3
=log SF3 —log SF2 =log —— 4
z = log og 8 7y (4)

These three variables determine the perceptual response by
yielding a set of coordinates in the auditory-perceptual space.
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Figure 1. Variance ellipses by phoneme of original and Miller

shifted data

Phonemic recognition occurs roughly by the “activation” of the
target zones.

If the auditory-perceptual theory is correct, then for phone-
mic recognition to take place, differing instances of the same
phoneme (produced by the same speaker or by different speak-
ers) must produce spectral envelopes that yield values of z, y
and z that fall into the perceptual target zone of that phoneme.
This also has ramifications for normalisation — the spectral en-
velope can be shifted up and down in frequency, and, if the
z, y, and z distances are maintained, the phonemic identity
should remain the same. It must be noted that such a shift
not only changes absolute formant locations, but should also
change, via the sensory reference, the pitch of the utterance.

4. VARIANCE MEASUREMENT

The Miller shift was applied to the training data in the TIMIT
[13] database. Each of the sentences was analysed for pitch
contour and for formant locations. GMFO and F1 and F2
values for each example of a monophthongal utterance were
collected. The Miller shift function is based on equal numbers
of adult male and female speakers giving a mean GMFO of
168.0 Hz. However, the TIMIT database contains about three
times as male as female speakers, giving a mean GMFO of 141.3
Hz. To compensate, a classifier based on GMFO was used as
a male/female discriminator with a threshold of 168 Hz. The
two speaker classes were weighted to give equal numbers of
male and female speakers, so restoring the GMFO to 168.4 Hz.

The variance measure was found through a full covariance
analysis. Covariance analysis yields variance measurements
(eigenvalues) along major and minor axes of the distribution.
If vma; and vyin denote the variances along the major and
minor axes respectively, then an overall variance measure, V,
which is proportional to the area of the distribution ellipse, can
be given by

V= \/m X v/VUmag (5)

The Miller shift function was applied to the data set and the
resultant variances were measured. Figure 1 shows the variance
ellipses for each of the 10 monophthongal vowels for both the
original data and for the Miller-shifted data. As can be seen,
the Miller variances ellipses are smaller than their original data
counterparts.



The Miller shift has created a slight change in mean F1 and
F2 location for each vowel. This shift in mean locations affects
the area of the ellipses and thus requires normalisation before
a direct comparison with the original variances can be made.
This shift is equivalent to a rotation followed by a scaling. The
rotation causes no change in ellipse size but scaling does. This
can be normalised by dividing by the determinant of the scaling
matrix. The scaling matrix is

xz(/)m yz(/)yl (6)

where 1 and y; denote the original mean locations and z2
and y2 denote the new mean. The determinant of the matrix
is Tay2 /T191.

Figure 2 shows the normalised variance comparison across
all phonemes of the original data and the data after the Miller
shift was performed. The Miller shift clearly reduces the overall
variance of the original data (from 21934 to 19207 a 12.4%
drop), including a significant reduction (11.0%) in the standard
deviation along the major axis. The overall standard deviation
along the minor axis, however, only shows slight improvement
with a 1.7% drop.
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Figure 2. Variance of original data versus variance of Miller-

shifted data
5. DERIVATION OF A NEW SHIFT FUNCTION

Miller based much of his work on the Peterson and Barney
data. This database, however, consists of vowels spoken in
only a single context and thus is a lot smaller than the TIMIT
database. Studying the characteristics of the larger TIMIT
database may yield a shift function which gives better results
than the Miller shift.

Figure 3 displays a graph with data points corresponding to
the optimal shift factor for reducing the distance between the
measured F1 and F2 values in comparison with the average F1
and F2 values. The data points are weighted averages obtained
over all 10 monophthongal vowels. The two straight lines in-
dicate the best-fit regression lines for two regions. The curved
line displays the Miller shift function. The regression line func-
tion appears to fit the data much better than the Miller func-
tion, especially in the region of low-pitched speakers. The shift
function can be summarised by the following 2 equations:

y = —0.000891z 4 1.221 if =z <= 168 7
y = —0.0005792 + 1.083 if x> 168 (7)

where z is the geometric mean of the pitch and y is the shift
factor amount.
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Figure 3. Best-fit shift factor functions

Applying this shift function to the TIMIT data yields a
greater decrease in the overall variance than that given by the
Miller shift. Figure 4 shows a bar graph of the variances in-
cluding the original, Miller shifted, new and optimal variances.
The optimal variance is defined as the lowest possible variance
that can be obtained using only F1, F2 and pitch as variables.
The optimal shift function is found by storing the shift factor
for each integral pitch value (each of the dots in Figure 3) in
a table. The new shift, with only 5 parameters, comes very
close to matching the optimal shift. V' for the new shift yields
18213.08, or a 17.0% improvement over the original data (the
Miller shift yielded a 12.4% improvement). The optimal shift
would yield a V' measurement of 18158.04, or a 17.2% improve-
ment. Not only does the new shift give a bigger reduction in
overall variance than the Miller shift, it also shows a signifi-
cant reduction in the standard deviation of both the major and
minor axes.

The new shift function was also applied to the unseen TIMIT
test data. Again, the new shift function performed better than
the Miller shift function. Figure 5 shows the results in bar
graph form. The Miller shift function performed similarly on
the training and test sets, yielding an 11.8% variance decrease
overall. Again, the Miller shift displayed very little improve-
ment in the standard deviation along the minor axis (only 1.3%
improvement). The new shift function again gave better results
than the Miller function with a 15.8% decrease in overall vari-
ance. Again, the new shift function was also able to reduce the
standard deviation along the minor axis better than the Miller
shift (a 5.0% reduction).

6. APPLICATIONS AND CONCLUSIONS

The shift function determined above can be applied as a means
to reduce variance. This reduction in variance should aid recog-
nition. In order to illustrate this, a simple Gaussian classifier
was built and used as a recogniser on the training and test
data sets. (It is not claimed that a Gaussian classifier is op-
timal, merely that its use may demonstrate how recognition
rate may be improved through the application of the shift func-
tion). The classifier built on the original training data resulted
in a recognition rate of 45.8% on the training data and 44.1%
on the test data. Building a classifier on the shifted training
data, and using it to classify the shifted training and test sets,
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Figure 4. Variances of original data, Miller shift, new shift and
optimal shift

yielded results of 48.4% and 47.1% respectively. This approx-
imate 3% recognition improvement was slightly better than
that obtained on a classifier built on the Miller shifted data.

The shift function may also be used in speech synthesis ap-
plications. Here, it can be used to transform sentences to take
on varied speaker qualities. That is, the formants and pitch of
a sentence spoken by a female speaker can be shifted down to
the formants and pitch more characteristic of a male speaker.
Similarly, the speech of a low-pitched male can be transformed
to take on female speaker quality. This technique can be used
to change the character of sentences in the multiple-speaker
TIMIT database to a more “generic” speaker for parameter
gathering purposes; conversely, the inverse of the shift function
can be used to change the output of a single-speaker synthe-
siser to the qualities of different speakers.

This paper has proposed a shift function which reduces the
variance in formant frequency location. This function relies on
pitch and performs better than the Miller function, another
function which uses pitch as the independent variable. The
shift function shows improvement in a simple recognition task.
The shift is also useful for changing voice quality. This has
applications for speech synthesis where the production of mul-
tiple voice qualities normally assumes duplication of effort in
synthesis database gathering.

It is fully realised that pitch is not the only variable which
effects the location of formant frequencies. Context, stress,
dialect, etc. are also factors. Ideally, a model which integrates
all these variables into a coherent model should be explored.
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