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ABSTRACT

We have investigated a novel method of spectral estimation
based on mixture of Gaussians in a sinusoidal analysis and
synthesis framework. After quantisation of this paramet-
ric scheme a fixed frame-rate coder operating at a bit-rate of
around 2.4 kbits/s has been developed. This paper describes
an extension to this spectral model based on constraining
the parameters of the mixture of Gaussians to be on a poly-
nomial trajectory over a segment of speech data. This is
referred to as the mixture of Gaussians polynomial model
(MGPM). In order to realise a segmental coder, dynamic
programming over the utterance is performed. The segmen-
tal representation of the spectra results in a log-likelihood
score over a segment which is used as the cost function in
the dynamic programming algorithm. Speech coding com-
ponents such as pitch, voicing and gain are described seg-
mentally. A number of segmental coders are presented with
bit-rates in the range of 350 to 650 bits/s. These coders of-
fer good and intelligible coded speech evaluated using DRT
scoring at these bit-rates.

1. INTRODUCTION

A segmental framework employs the inter-frame or time de-
pendence of the spectral representation. This dependence
is inherent in various segments of speech, such as sustained
vowels, as the speech spectral envelope is a slow time-varying
process and spectra of adjacent frames are highly correlated.
Various forms of segmentation models have been applied
to speech coding and speech recognition. In speech cod-
ing Roucos et al [11] describe a very low bit-rate segment
vocoder operating at 150 bits/s for a single speaker. This
low rate is achieved by vector quantisation (VQ) of all the
LPC spectra in a segment as a single unit. The Kang-Coulter
600 bits/s vocoder [6] also uses LPC methods followed by
formant tracking to produce good quality speech with a re-
ported DRT score of 79.9. These low bit-rates can also be
achieved by a recognition-based approach where recognition
units are coded. Holmes [5] has described a method which
uses an underlying linear-trajectory formant model for both
recognition and synthesis.

The contribution of this work is to model the envelope
of the short-term power spectral density as a mixture of
Gaussians [13]. In this framework a Gaussian roughly corre-
sponds to a formant with the Gaussian mean corresponding
to the formant frequency and the variance corresponding to
the bandwidth. This model was integrated in a sinusoidal
model based speech coding scheme [14]. An advantage of
this framework is that a speech segment may be modelled
using a polynomial trajectory for the Gaussian means and
variances. We have previously reported on a segmental coder
using a linear polynomial trajectory for the Gaussian mix-
tures operating between 600-800 bits/s [15]. We extend this
model to an R’th order polynomial to represent both means
and variances of the Gaussians. In the speech recognition
area, similar models have also been implemented for MFCC

trajectories in a HMM-based system [4].
2. SEGMENTAL CODER STRUCTURE

The block structure of the coders described in this paper is
as shown in Figure 1. A sinusoidal model framework based
on the ideas of McAulay and Quatieri [8] is used. In this
model, the speech signal is represented by a harmonic set of
partials with varying amplitudes and frequencies. In accor-
dance with our desire to build a very low bit-rate coder we
restrict the sine waves to be harmonically related. The in-
verse FF'T method of re-synthesis [3] is used and the phase of
each harmonic is chosen at reconstruction time to minimise
the mismatch with the previous frame.

The Spectral Envelope Estimation Vocoder (SEEVOC)
envelope, devised by Paul [9] uses a robust peak detection
algorithm to yield a smooth envelope as the underlying spec-
tral representation. In order to operate in the low bit-rate
region, the SEEVOC envelope needs to be efficiently coded.
We aid the mixture of Gaussians polynomial model to rep-
resent this spectra over a segment. Polynomial least squares
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Figure 1. Block diagram of MGPM vocoder structure.

fits of pitch and gain over the segment, and a segmental
representation of voicing is used to complete the paramet-
ric segmental system. The following sections describe these
segmetnal representations in more detail.

2.1. Mixture of Gaussians Polynomial Model

Mixture models are extensively used in applications where
data can be viewed as arising from several populations mixed
in varying proportions. This maximum likelihood estimation
technique can be applied to learn parameters of the mixture
pdf. The Expectation Maximisation (EM) algorithm [2] is
a broadly applicable algorithm used to maximise the log-
likelihood from incomplete data, by iteratively maximising
the expectation of log-likelihood from complete data. The
SEEVOC magnitude spectrum, once normalised is consid-
ered as a probability distribution P:(k), where k are the bin
numbers (k = {1,--+,N}) and ¢ is the frame index. Hence,
P;(k) is simply a normalised spectral density at time frame
t. For this model we use the EM algorithm as an optimisa-
tion tool for estimating mixture density parameters, viewing
Pi(k) as a histogram.



2.1.1. Derivation of Model Parameter Estimation
Formulae

Let a data sample k be the observed incomplete data and
(P:(k),yx) be the complete data, where y; is an unobserv-
able integer between 1 and s. This term y; then indicates
the number of density components f(k|yx, py,) and mixing
parameters wy, of the mixture pdf, where the parameter set
is given by ® = {¢1,---, s}

The aim is simply to fit the histogram representation of
the spectrum where the means of the densities are FFT bin
numbers and are restricted to a polynomial over a segment
of spectra. This results in mixture densities which repre-
sent a smoothed spectral shape for all . We assume that
a parametric family of mixture probability density functions
f(k,t|®) is given and that ® represents the parameter val-
ues to be estimated. The log-likelihood of the data set can
be formulated as follows

= log HHf(k,tlff)P“k) (1)

The posterior probability is represented by

wy, f(k, tlyr, dy,,)
E wykf (k t|yk7¢yk)

The Q-function can be represented as:
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P(yklk,t, ®) = ()

where ~;(k,t) = Py(k)P(ilk,t,$i). Since there is a summa-
tion over all y (1 < yp < s) Yk is independent of k, and
therefore, can be denoted by i.

Maximisation of the Q-function is obtained by maximising
each term of this function for each mixture ¢ with respect to
the mixture weight w; and the mixture parameters ¢;. This
is the EM update equation for mixture density equations
which leads us onto the definition of the density to be used
and maximisation of the associated parameters.

2.1.2. Maximisation

The mixture density used in this research is the Gaussian
distribution and hence, before differentiating the above func-
tion, the functional terms within the equation are defined as
follows:

o=y ooy 1 (k—ztl_)i)z
f(k’th’i))_N(k’bl’ai)_Tg?eXP{_T
(4)
where
b, = [bio,bi1,...,bir]" (5)
ze = [Lt,t5,.. . t7]. (6)

Thus, the mean of the Gaussian distribution described by
equation 4 is represented by an R’th order polynomial. Af-
ter differentiating equation 1 with respect to the mean tra-
jectory parameters b;, of the ’th mixture, and equating to
zero, by substitution and noting that &; is independent of
time we obtain
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which results in a set of linear simultaneous equations which
are solved for the mean trajectory parameters b;,.

In order to estimate the variance of each mixture 5, equa-
tion 1 is differentiated with respect to this variance and
solved for &7 resulting in the maximum likelihood estimate
given by:

(_le _ Ze=1 Zk:l vi(k,t)(k — ztl—)i)2' ®)
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Finally, the mixture weights @; can be estimated using equa-
tion 1 by application of a Lagrange multiplier [1] resulting
in the following

EtT—1 EkN—l 'W(ka t)

w; = — — . (9)
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This completes the EM based maximisation of the parameter
space of the mixture of Gaussians with polynomial mean
trajectories.

2.1.3. Variance Trajectory Model

It is also possible to obtain a more precise model of the
spectral dynamics within the segment by representing the
variance of the ¢’th mixture by an R’th order polynomial
where the likelihood of the data given the parameters is given
by

= _ 1 (k—ZtB,‘)Z
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After differentiation of equation 1 with respect to ¢; and
setting to zero, a non-linear equation in ¢;, is obtained. In
order to make this a linear function, an approximation is
used where the ¢;, in the denominator of the maximised
log-likelihood is replaced by the current value, ¢, [4, 12].

An illustration of a mixture of Gaussians polynomial fit
over a short segment of speech is given in Figure 2.
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Figure 2. Spectrogram representation of MGPM tracking using
both mean and variances, over a short segment of speech with
4 Gaussians.

2.2. Initialisation

The mixture of Gaussian means are uniformly initialised over
the interval. The variances are made significant with respect
to the interval and the number of Gaussians in the mixture.
The mixture weights are set equal values. In addition to
this, for the higher order polynomial components (i.e. not
the 0’th component), an initial value of 0.01 is set. The
convergence point is on average at around 9 iterations.



2.3. Segmental Pitch & Gain

The gain requires a considerable number of bits to code per
segment if coded on a single frame basis. More efficient com-
pression can be achieved by using a least means square poly-
nomial fit over a segment. The pitch determination algo-
rithm is based on the autocorrelation method. Representa-
tion of pitch over a segment is also based on a polynomial fit,
using polynomials of order two for pitch and order three for
gain. Figure 3 demonstrates polynomial fits over an utter-
ance after segmentation. Note that both these components
were dynamically transformed using a logarithmic scale.

2.4. Segmental Voicing

Voicing is detected using the autocorrelation function in
combination with the low-band and high-band energy. When
the segment boundaries have been obtained, the following
segmental vector representation of voicing within the seg-
ment is used. Initially, a maximum number of transitions of
voicing is set. At the start of the segment the voicing in the
transmitter and the receiver is set to 1 (voiced). Using the
voicing decisions within the length of the segment, the voic-
ing transitions are represented as a fraction of this segment
length. As an example, if the maximum number of transi-
tion is five and at the start, the segment is voiced, a vector
can be constructed as follows:

v =11,0,0,0,0] (10)

If there are voicing transitions at frames four (to unvoiced)
and nine (to voiced), and the maximum segment length is
twelve, then the vector would be represented as,

v = [1,0.3333,0.75, 0, 0] (11)

which results in an efficient vector representation of the voic-
ing within the segment boundaries.

3. OPTIMAL SEGMENTATION

A simple method of segmenting speech has been devised
based on dynamic programming. The cost function is the
log-likelihood of the segment described by equation 1. A
transition penalty is assigned in order to penalise short seg-
ment lengths. Various experiments were carried out in order
to find the optimum transition penalty for obtaining the best
segment boundaries from a speech coding point of view. This
view places less constraint on the accuracy of the segment
boundaries as no classification step is required.
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Figure 3. Gain and Pitch polynomial fits.

4. CODER IMPLEMENTATION

A number of coders were devised based on the above pa-
rameterisation techniques. Speech is sampled at 8 kHz and
a fixed frame-rate of 16 ms is used. First, the speech sig-
nal is broken down into frames, with a frame-step of 128
samples. A hamming window of length 512 is used. This
is then transformed using a 512 point FFT, yielding a 256
point spectrum.

Two methods of vector representations for coding the
MGPM parameters are possible. As an example, consider
the quantisation of the mean trajectory parameters (Equa-
tion 5). The case where there are six Gaussians within the
mixture with polynomials of order R = 2, results in a m by n
matrix where m = 6 and n = 3. Vectors for quantisation can
be constructed based on either a mXxrow or nxcolumn rep-
resentation of this matrix. By using a column vector repre-
sentation, a considerable reduction in the number of vectors
is obtained and as a consequence the number of codebooks
are also reduced. The MGPM codebooks were trained based
on this column vector representation. The vector bro was
warped based on the Mel-scale in quantisation, where k is
the mixture component index. Also the standard deviation
vector cro was represented as a fraction of bxo.

The VQ codebooks were constructed from training data
obtained from WSJCAMO corpora [10]. Natural speech
from 50 different speakers lasting approximately 39 minutes
in total was used. Each codebook was trained using the LBG
algorithm [7].

4.1. Bit Allocation of MGPM coders

After segmentation, the average segment length of the words
in DRT score was found to be 9.4 frames using a constant
transition penalty. This results in an average frame-rate of
6.65 frames/sec. Table 1 below summarise the bit allocation
for coders to obtain average bit-rates of 650, 550, 450, and
350 bits/s. The coder resulted in a DRT score of 88.8 using
no quantisation of the parameters. The coder operating at
650 bits/s is the only coder that is using the variance trajec-
tory model. High number of bits is allocated on the first col-
umn vectors of the mixture of Gaussians polynomials which
include the bgo and co vectors. A total of 99 bits/segment
was allocated.

We found that in order to be able to operate at 550 bits/s
and achieve high intelligibility the variance trajectories
needed to be discarded. The number of bits required is too
high to justify using this model for these lower bit-rates.
Thus we assume that the formant bandwidths within the
segment are a constant.

In order to operate below 450 bits/s, rather than reduce
the number of bits for each parameter type, better com-
pression of speech was achieved by increasing the average
segment length to 10.5 frames. This results in an average
frame-rate of 5.95 frames/sec over the DRT words which
was achieved by decreasing the transition penalty from 0.01
to 0.006.

Figure 4 illustrates spectrograms of “There are always
problems with new plans he said” using various levels of
compression of this segmental coding scheme [Sound files at-
tached].

5. PERFORMANCE OF MGPM CODERS

Subjective evaluations have been based on twelve listeners
DRT scores, with every person presented with a different 96
stimuli words. Table 2 illustrates the scores obtained. It
can be seen that as compared to the standard coders the
intelligibility of the 350 bits/s coder is at the scale of the
2.4 kbits/s LPC-10e and the 650 bits/s is marginally higher
than that of CELP-4.8.
6. CONCLUSIONS

The subject of this paper has been the investigation and
formulation of a particular branch of digital speech cod-



| Operating Bit-rate | 650 bits/s

| 550 bits/s [ 450 bits/s | 350 bits/s |

| Parameter Type | Representation | Bits/Segment | Bits/Segment | Bits/Segment | Bits/Segment |

bro Mel-scale 12 12 12 9

b1 - 12 10 8 7

br2 - 7 9 6 5

CLO Fraction of byg 12 12 10 8

Ck1 - 8 - - -

CL2 - 7 - - -
Mixutre Weights - 10 10 10 8
Segmental Gain - 12 12 12 9
Segmental Pitch - 9 9 9 7
Segmental Voicing - 6 6 6 5
Segmental Duration - 4 4 4 4

| Total bits per Segment | 99 | 84 | 7 | 62 |

Table 1. Representation of parameters and bit allocation per segment.
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Figure 4. The above wide-band spectrograms represent (a)
original 8 kHz input speech, (b) GM coded speech at 2450
bits/s, and MGPM coded speech at (c) 650 bits/s, (d) 550
bits/s, (e) 450 bits/s and (f) 350 bits/s.

| Coder | Bit-rate | DRT score |

LPC-10e 2400 bits/s 68.0

CELP 4800 bits/s 83.8
Fixed-Rate GM coder | 2400 bits/s 88.1
Segmental GM coder 650 bits/s 84.4
Segmental GM coder | 550 bits/s 81.2
Segmental GM coder 450 bits/s 72.5
Segmental GM coder 350 bits/s 67.4

Table 2. DRT results for the segmental and fixed-rate Gaussian
Mixture (GM) coders

ing, namely sinusoidal model based segmental speech cod-
ing. The schemes developed have been formulated for very
low bit-rate applications. The work focused on the extension
of the fixed frame-rate Mixture of Gaussian based coder to
a segmental parametric coder using mixture of Gaussians

polynomial models. In order to obtain a segmental coder,
dynamic programming using the best fit of the MGPM over
segments resulted in segment boundary estimation. All
speech coding components were described segmentally and
quantised, resulting in coders operating at bit-rates of 350-
650 bits/s. Decisions were made on the allocation of bits us-
ing listening tests to judge the importance of the segmental
parameters. The new coder was compared against LPC10e
and CELP using DRT evaluation and found to provide the
same DRT score at only 15% of the bit rate.
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