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Abstract

This paper explores the interaction between a language model’s perplexity and its
effect on the word error rate of a speech recognition system. Much recent research
has indicated that these two measures are not as well correlated as was once
thought, and many examples exist of models which have a much lower perplexity
than the equivalentN-gram model, yet lead to no improvement in recognition
accuracy. This paper investigates the reasons for this apparent discrepancy.
Perplexity’s calculation is based solely on the probabilities of words contained
within the test text; it disregards the probabilities of alternative words which will
be competing with the correct word within the decoder. It is shown that by
considering the probabilities of the alternative words it is possible to derive
measures of language model quality which are better correlated with word error
rate than perplexity is. Furthermore, optimizing language model parameters with
respect to these new measures leads to a significant reduction in the word error
rate.

c© 2001 Academic Press

1. Introduction

For many years, perplexity (Bahl, Jelinek & Mercer, 1983) has been the measure by which
language model quality has been evaluated. There are good reasons for this; it is a sim-
ple, well-understood measure that fits into the maximum likelihood framework and it can be
computed quickly. However, recent work on language modelling has demonstrated that the
correlation between a language model’s perplexity and its effect on the word error rate of a
speech recognition system is not as strong as was once thought. There are many examples of
cases in which a language model has a much lower perplexity than the baseline model, but
does not result in a reduction in word error rate, and often results in a degradation in recogni-
tion accuracy. This paper investigates reasons for this apparent discrepancy, and describes the
development of measures of language model quality that are more strongly correlated with
word error rate than perplexity is. The work focuses on the broadcast news task (Pallett &
Fiscus, 1997).

The calculation of perplexity is based on the probability that the language model assigns
to some test text. If the language model is successful it will assign a high probability to this
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test text, with the result that the language model will have a low perplexity. Thus perplex-
ity is based solely on the probabilities of the words which actually occur in the test text.
Previous work (Chen, Beeferman & Rosenfeld, 1998) has investigated ways in which this
information can be used to better predict word error rate. In this paper we consider lan-
guage models with the same perplexity, but which result in different word error rates. We
show that merely considering the probabilities of the words which occur in the test text
is inadequate to distinguish between them. Thus we show that it is important to also con-
sider the manner in which the remaining probability mass is distributed over the alternative
words, which may be competing with the correct word in the decoder of a speech recog-
nition system. We show that including such information leads to measures which are bet-
ter correlated with word error rate. Finally, we will show how the information from the
new measures can be used to select more appropriate interpolation weights for mixture-
based language models. Such interpolation weights lead to a small, but statistically sig-
nificant improvement in word error rate as compared to the original maximum likelihood
weights.

2. Same perplexity language models

2.1. Construction of same perplexity language models

Previous work (Clarkson & Robinson, 1998) has investigated mixture-based models (where
the training text is partitioned according to topic, a language model constructed for each
component, and weights assigned to each language model according to the observed style of
language) and cache-based models (in which the probabilities of recently occurring words
are boosted). Such work has shown that while both models have lower probabilities than the
equivalent baseline trigram language model, neither lead to a reduction in word error rate.

If one reduces the amount of training data used to train the mixture- or cache-based lan-
guage models, their perplexities will be increased. Indeed, if one selects the correct amounts
of training data for each language model, it will be possible to generate cache- and mixture-
based models that have the same perplexity as the baseline trigram model.

Reducing the amount of training data available to the mixture- or cache-based models is
likely to lead to a degradation in recognition accuracy. Therefore, an under-trained mixture-
or cache-based language model would be expected to result in a higher word error rate than
the baseline model. These models will therefore differ in some way that is important in terms
of word error rate, despite having identical perplexities. By investigating the manner in which
the models differ it is to be hoped that some light might be shed on the discrepancy between
word error rate and perplexity.

Such “same-perplexity language models” were constructed. The baseline language model
was a standard back-off trigram model trained on the 130 million word broadcast news cor-
pus (Graff, 1997), with a 65 000 word vocabulary and bigram and trigram cutoffs of 1. The
cache-based model was generated by interpolating a static trigram model with a dynamic
unigram component trained on the text of the previously-seen portion of the current article.
The mixture-based model was built by partitioning the training text into 30 components, and
generating a trigram model for each, with a trigram trained on the full set of training data
used as an additional component.

The perplexity results are based on the 17 million words of held-out language model
text from the broadcast news corpus. Of this, 5 million words are used to estimate appro-
priate values for the interpolation weights, and the remaining 12 million are used for the
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TABLE I. Summary of same-perplexity language models

Model % Training data Perplexity Word error rate
Baseline 100 134.4 37.9
Cache-based 37 134.4 39.3
Mixture-based 42 134.4 39.3

actual perplexity computation. The word error rate results are based on the six shows of
the 1996 Hub 4 development test, and were generated by rescoring lattices produced by a
simplified version of the 1996 Hub 4 Abbot system (Cook, Kershaw, Christie, Seymore
& Waterhouse, 1997). The lattice word error rate (i.e. the word error rate which would re-
sult if we chose the path through each lattice with the least errors) for these lattices was
7.0%.

Cache- and mixture-based language models were generated which had the same perplexity
as the baseline trigram language model. This was achieved by using only a fraction of the
training data for the mixture- and cache-based models, while keeping all other factors the
same. As such, a randomly chosen set of articles were removed from the training text. It
was found that using 37% of the training data for the cache-based model and 42% for the
mixture-based model resulted in models with the same perplexity as the baseline model.
Lattice rescoring experiments were conducted using these models in order to determine the
models’ effect on word error rate. The models are summarized in TableI.

The differences between the recognition accuracy resulting from the use of the baseline
model and the mixture- and cache-based models are statistically significant at the 1% level
according to the matched pairs sentence segments word error test (Gillick & Cox, 1989).

2.2. Estimating the number of words correct

Consider a functionfM(x) which indicates the probability that a word chosen at random
from test text will be assigned a log probability ofx by the language modelM (so

∫ 0
−∞

fM
(x)dx = 1). The valueµ of the mean log probability of the words in the test text can be
computed given the values offM(x):

µ =

∫ 0

−∞

x fM(x)dx. (1)

Since perplexity is based on the mean log probability of the words in the test textwn
1:

P P = P(wn
1)
−1/n
= e−

1
n

∑n
i=1 log[P(wi |w

i−1
1 )]
= e−µ, (2)

fM(x) contains at least as much useful information as the value of perplexity, and possibly
somewhat more.

Consider also a functiong(x) which indicates the probability that a word with language
model log probabilityx will be recognized correctly.fM(x) andg(x) can be combined to
generate an estimate of the expected number of words correct:

EM(Words correct) =
∫ 0

−∞

fM(x)g(x)dx. (3)

This is potentially a more useful predictor of recognition performance than perplexity.
This technique was first investigated byChenet al. (1998), and was used to deriveM-ref, a
measure of language model quality.
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Note that this assumes that the functiong(x) is constant across all language models. This
assumption is necessary, asg(x) can only be estimated based on knowledge of whether words
with particular language model probabilities were correctly recognized. Generating this in-
formation requires a recognition pass, so if it were necessary for every language model under
consideration, one could simply evaluate the word error rate directly, and there would be no
need to use techniques to estimate its value.

2.3. Estimating the functions f and g

The function fM(x) was estimated by partitioning the probability range into 100 bins which
are spaced equally in the log domain. For each language model, the number of words in
the test text which have language model probabilities in each bin is computed. The function
f (x) was estimated for the baseline trigram model, as well as for the same-perplexity cache-
and mixture-based models. Figures1 and2 show the resulting functions for the cache- and
mixture-based models compared with the baseline trigram model.

The functiong(x) was computed individually for each of the language models. The tran-
scription generated using each language model was aligned with the reference transcription
using the same dynamic programming algorithm as was used for word error rate scoring, and
hence each word in the reference transcription was labelled according to whether it was cor-
rectly recognized when each of the language models were used. The probability range was
split into 30 equally log-spaced bins1, and the values ofg(x) were then estimated at each of
the bin centres according to

g(x) =
#words with LM probs in bin that were correctly recognized

#words with LM probs in bin
. (4)

The resulting functions are displayed in Figures3 and4. Figure3 shows the comparison
of gtrigram(x) with gcache(x), and Figure4 comparesgtrigram(x) andgmixture(x).

2.4. Results

The estimates for the values of thef (x) andg(x) were used to generate estimates for the
number of correct words according to the following approximation2:

E(Proportion of words correct) =
∫ 0

−∞

f (x)g(x)dx ≈
∑

x∈Bin centres

f (x)g(x). (5)

The estimated proportions of words correct were generated in two ways. Firstly, the esti-
mate was based on the appropriate version ofg(x), in order to generate the most accurate
value. That is, the expected proportion of words correct using the modelM was calculated
using

∑
fM(x)gM(x). However, since an estimate forg(x) for each language model will

not be available in practice, an estimate was also generated usinggtrigram(x). So, for the model
M, the expected proportion of words correct was

∑
fM(x)gtrigram(x). The results are shown

in TableII .
The discrepancy between the actual proportion of words correct, and the values of

∑
fM

(x)gM(x) is due to the fact thatfM(x) is estimated based on the test text, rather than the
1Fewer bins were used than in the computation off (x) since information from a recognition pass was required, as
opposed to information from a large, text-only test set, and therefore the data was more sparse.
2The “bin centres” referred to are the 100 bin centres used in the estimation offM(x). The values forg(x) were
taken then from the bin with the closest value.
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Figure 1. Probability distribution graph. Comparison offtrigram(x) and fcache(x).
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Figure 2. Probability distribution graph. Comparison offtrigram(x) and fmixture(x).
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Figure 3. Comparison ofgtrigram(x) andgcache(x).
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Figure 4. Comparison ofgtrigram(x) andgmixture(x).
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TABLE II. Estimates of words correct

Actual words
Model correct

∑
fM(x)gM(x)

∑
fM(x)gtrigram(x)

Baseline 69.4% 70.6% 70.6%
Cache 67.4% 68.4% 70.6%
Mixture 67.2% 68.4% 70.7%

reference transcript. The language models have a lower perplexity with respect to the test text
than they do with respect to the reference transcription, and this leads to a high estimate for
words correct. If the reference transcription were used to generate estimates for the values of
fM(x), then the actual proportion of words correct would be identical to

∑
fM(x)gM(x).

2.5. Discussion

The first observation to make from Figures1–4 is that it is not the case thatg(x) is constant
across all the models. This suggests that it is unlikely to be possible to predict a model’s
effect on word error rate accurately from its probability distribution curve alone. Indeed,
the values of

∑
fM(x)gtrigram(x) in TableII show that the expected values of proportion of

words correct generated bygtrigram(x) do not show any difference between the three same-
perplexity language models.

This phenomena is shown even more strongly by Figure2, which shows that the probability
distribution curve for the mixture-based model is almost identical to that of the baseline
trigram model. These models result in significantly different word error rates, yet there is not
sufficient information in the probabilities of the words in the test text to distinguish between
them. It is clear then, that the information needed to discriminate between these models is not
contained in the probabilities of the words which actually occur in the test text. It therefore
seems likely that the information needed to distinguish between the models is contained in
the way in which the remaining probability mass is distributed over thealternativewords,
which will compete with the correct word in the decoder of a speech recognizer. It is this
observation which motivates the work in the next section.

3. Improved measures of language model quality

3.1. The use of the whole distribution

Previously in this paper, language models have been evaluated according to their perplexity.
At each point in the test text, the computation of perplexity considers only the probability of
the next word in the text. The language model evaluation schemes explored in this section,
however, are based on the probability distribution over the whole vocabulary. That is, if the
test text iswn

1, then perplexity is based on the values ofP(wi | w
i−1
1 ), and the new measures

will be based on the values ofP(w | wi−1
1 ) for all w. The wordwi which actually follows

the word historywi−1
1 in the test text will be referred to as thetarget word.

At first glance, it might seem that computingP(w | wi−1
1 ) for all words in the vocabulary

will require more computation by a factor ofV (whereV is the number of words in the
vocabulary) than simply computing one probability, sinceV language model probabilities
need to be calculated. However, there are some short-cuts which can be applied which mean
that this is not the case.
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Consider the case of a trigram model, where one is attempting to find the values ofP(w |
w2

1) for all w. The language models used in this work were created using the
CMU-Cambridge Statistical Language Modelling Toolkit (Clarkson & Rosenfeld, 1997). In
these models the information is stored in a tree structure, with the unigram information at the
node and the trigram information at the leaves. Therefore, one can find the position ofw2

1 in
the bigram layer of the tree, and from there look up the probabilities of all the wordsw such
that the trigram(w1, w2, w) exists in the language model. One can then find the position of
w2 in the unigram layer, and look up the probabilities of all wordsw such that the trigram
(w1, w2, w) does not exist in the language model, but(w2, w) does. Finally, the probabilities
of thew which have not yet been computed can simply be looked up from the unigram layer.

While this process is considerably more computationally expensive than looking up the
probability of just the target word, it is much more efficient than simply performingV lan-
guage model look-ups. In practice, for the software generated for this work, it requires ap-
proximately 500 times more computational time to compute the whole distribution for a
65 000 word vocabulary than it does to compute one language model probability.

3.2. Language model test set

In order to investigate the correlation between word error rate and new language model eval-
uation measures, it is clearly necessary to have a large set of language models upon which to
base the experiments.

A set of 50 language models was constructed. These models comprise bigram, trigram,
mixture- and cache-based models, which have been trained on either the broadcast news
corpus or British national corpus—a very varied corpus consisting of 100 million words of
British English (Burnard, 1995). Different quantities of the training corpora were used to train
each language model, and various cutoffs were applied. The lattices described in Section 2.1
were rescored using each language model and the resulting word error rate was computed for
each. The set of models is summarized in TableIII . The table indicates whether the broadcast
news (bn) or British national corpus (BNC) was used to train the model, the type of language
model (either bigram or trigram), the type of adaptation used (whereC(x) represents cache-
based adaptation with an interpolation weight ofx for the cache component), the proportion
of the training data used to train the model, the cutoffs applied and the word error rate. The fi-
nal three models were based on a two-component mixture model with one component trained
on the broadcast news corpus, and the other on the British national corpus. The interpolation
weights were fixed, and not intended to reflect the target domain. The adaptation argument
M(x) indicates that the mixture weight assigned to the broadcast news component wasx.

Some interesting points are brought to light by TableIII that are worth mentioning in
passing. By comparing the word error rates of models 38 and 46, it can be seen that adding
a cache component to a bigram language model leads to a reduction in word error rate for
models trained on the broadcast news corpus. Similarly, comparing models 6 and 31 reveals
that adding a cache component to the broadcast news model with bigram and trigram cutoffs
of 20 results in a reduction in word error rate and comparing models 9 and 26 reveals that
adding a cache component to a trigram model trained on only a small fraction of the broadcast
news data also yields a reduction in word error rate. These results are all in contrast to the
results of adding a cache component to the baseline broadcast news model. Furthermore, it
can be seen that both cache- and mixture-based adaptation improve recognition accuracy for
models trained on the British national corpus (compare models 34 and 36 with model 15).
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TABLE III. Summary of language models used to investigate new language model evalua-
tion schemes

Model Training Type Adaptation Fraction of Cutoffs WER
corpus training data

1 bn 3-gram None 1.0 0 0 38.0
2 bn 3-gram None 1.0 1 1 37.9
3 bn 3-gram None 1.0 2 2 38.2
4 bn 3-gram None 1.0 5 5 39.2
5 bn 3-gram None 1.0 10 10 40.0
6 bn 3-gram None 1.0 20 20 40.9
7 bn 3-gram None 1.0 50 50 41.9
8 bn 3-gram None 1.0 100 100 43.1
9 bn 3-gram None 0.001 1 1 52.0

10 bn 3-gram None 0.01 1 1 45.7
11 bn 3-gram None 0.1 1 1 40.9
12 bn 3-gram None 0.25 1 1 39.5
13 bn 3-gram None 0.5 1 1 39.0
14 BNC 3-gram None 1.0 0 0 43.5
15 BNC 3-gram None 1.0 1 1 42.8
16 BNC 3-gram None 1.0 2 2 43.1
17 BNC 3-gram None 1.0 5 5 43.5
18 BNC 3-gram None 1.0 10 10 43.9
19 BNC 3-gram None 1.0 20 20 44.7
20 BNC 3-gram None 1.0 50 50 45.8
21 BNC 3-gram None 1.0 100 100 47.2
22 BNC 3-gram None 0.01 1 1 50.6
23 BNC 3-gram None 0.1 1 1 46.2
24 BNC 3-gram None 0.25 1 1 44.5
25 BNC 3-gram None 0.5 1 1 43.7
26 bn 3-gram C(0.1) 0.001 1 1 50.6
27 bn 3-gram C(0.05) 1 1 1 37.9
28 bn 3-gram C(0.1) 1 1 1 38.0
29 bn 3-gram C(0.25) 1 1 1 38.8
30 bn 3-gram C(0.5) 1 1 1 40.6
31 bn 3-gram C(0.1) 1 20 20 40.5
32 bn 3-gram Mix 1 1 1 38.2
33 bn 3-gram Mix 0.42 1 1 39.3
34 BNC 3-gram Mix 1 1 1 41.8
35 BNC 3-gram C(0.1) 1 20 20 43.8
36 BNC 3-gram C(0.1) 1 1 1 42.0
37 BNC 3-gram C(0.1) 0.01 1 1 49.1
38 bn 2-gram None 1 1 41.7
39 bn 2-gram None 1 5 42.2
40 bn 2-gram None 0.01 1 47.1
41 bn 2-gram None 0.5 1 42.0
42 BNC 2-gram None 1 1 45.2
43 BNC 2-gram None 1 5 45.7
44 BNC 2-gram None 0.01 1 50.7
45 BNC 2-gram None 0.5 1 45.8
46 bn 2-gram C(0.1) 1 1 41.4
47 BNC 2-gram C(0.1) 1 1 44.4
48 bn+BNC 3-gram M(0.25) 1 1 1 38.9
49 bn+BNC 3-gram M(0.5) 1 1 1 38.1
50 bn+BNC 3-gram M(0.75) 1 1 1 38.0
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These results all indicate that the language model adaptation techniques are of benefit in
situations where the baseline model is of low quality or less suited to the target domain.

The extent of the correlation between the new evaluation schemes and word error rate will
be evaluated using three correlation coefficients: the Pearson product-moment correlation
coefficientr , the Spearman rank-order correlation coefficientrs, and the Kendall rank-order
correlation coefficientT .

The perplexity results reported in previous sections were calculated with respect to the
language model test text. However, the language model evaluation schemes which will be
described in this section are evaluated with respect to the reference transcription of the broad-
cast news shows upon which the word error rate scores are based. There are two reasons for
this. The most important reason is the potential mismatch between the language model test
text and the recognition task. When perplexity is calculated using the language model test
text, there is an implicit assumption that this text is representative of the speech which one
is attempting to recognize. Due to the nature of the language model test set in this case, this
assumption is reasonable. However, one can avoid the need to make it at all by basing the
perplexity calculation on the reference transcription. The second reason is a pragmatic one.
Since the evaluation of measures based on the whole distribution requires approximately 500
times more computational time than the calculation of perplexity, the opportunity to evaluate
them based on a test set of 22 000 words (as opposed to the 17 million word test text) is
appealing.

3.3. New language model evaluation measures

3.3.1. Proposed features

Log probability (perplexity). Perplexity has been used as a method of evaluating lan-
guage models throughout this paper, and in this section it serves as the baseline measure. The
correlation between word error rate and perplexity on the test set of 50 language models was
evaluated.

Rank. Perplexity measures the language model’s success according to the probability it
assigns to each of the words in the test text. An alternative is to evaluate the language model
according to the proportion of words which have a higher probability than the target word
at each time point. By so doing, the measure would encode the quality of the target word’s
prediction relative to the other words with which it will be competing within the speech
decoder.

Therank of the target word, given a particular history is defined as the word’s position in
an ordered list of the word probabilities. Thus the most likely word has rank one, the least
likely has rankV .

For each language model, the rank of each word in the reference file was calculated. Hence
themean log rankof each language model was computed, and the strength of the correlation
between this measure and word error rate evaluated.

Entropy. Given a particular word historywi
1 and a language model, theentropyof the

probability distribution over the vocabulary3 is given by

H = −
∑
w

P(w | wi
1) log2 P(w | wi

1). (6)

3Note that this is different from the test text entropy, which is computed on the whole test set, and is often quoted
instead of perplexity.
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TABLE IV. Correlation of evaluation measures
with word error rate

r r s T
Perplexity 0.955 0.955 0.840
Mean log rank 0.967 0.957 0.846
Mean entropy −0.799 −0.792 −0.602
L(2−5) −0.919 −0.893 −0.726
L(2−10) −0.915 −0.917 −0.768
L(2−15) −0.833 −0.817 −0.640
L(2−20) −0.646 −0.544 −0.388

Therefore, the entropy is related to the expected value of the log probability given the word
history in the following way:

E(log2 P(w | wi
1)) = −H . (7)

Since log probability and entropy are related in this way, and perplexity is based on the
meanlog probability of words in the test text, the measure that was developed was based on
themeanentropy over the test text.

Low probability estimates. The set of 50 language models makes it possible not only to
investigate new language model evaluation measures, but also to evaluate previously pro-
posed ones. In particular, inBahl, Brown, de Souza and Mercer(1989) language models are
compared according to the number of words in the test text which receive probability esti-
mates below a certain threshold. The premise is that recognition errors are strongly correlated
with very low language model estimates. Therefore, the correlation between word error rate
and measures of the formL(x) which measure the proportion of words whose probability
estimate is less than or equal tox was investigated.

3.3.2. Results

The results of each of these new measures are shown in TableIV.
These results show that the mean log rank is at least as well correlated with word error

rate as perplexity is, but that the measures based on entropy and the number of low proba-
bility estimates (in particularL(2−15), the measure used inBahlet al. (1989)) are inferior to
perplexity.

The inferiority of the entropy-based measure to perplexity is unsurprising, since the en-
tropy contains only information about the distribution in general, and no information about
the target word in particular. However, there is a clear correlation displayed by these results,
so some useful information is certainly present in this measure. In Section3.4the manner in
which this information can be used in a more fruitful way will be investigated.

3.4. Combining features

We now investigate methods of combining the information from some of the measures de-
scribed above. We begin by examining the correlation between these measures to investigate
which might usefully be combined. Then measures which combine the information from the
target word’s log probability and entropy are constructed and evaluated.
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TABLE V. Correlation between lan-
guage model features

Feature 1 Feature 2 rs
Probability Rank −0.985
Probability Entropy −0.378
Rank Entropy 0.381

3.4.1. Correlation of features

The following features were selected:

• probability;
• rank;
• entropy;

and the value ofrs for each pair of features was calculated based on their values for each of
the words in the test text according to the baseline broadcast news language model (model 2
in TableIII ).

These results clearly show that there is a very strong correlation between a word’s prob-
ability and its rank. That is, the two features provide very similar information. Conversely,
there seems to be much less correlation between a word’s probability and the entropy of the
distribution at that point in the test text. Thus, the information provided by these features is,
in some sense complementary. Given that both features provide information which is useful
in predicting word error rate, it seems that if the information sources can be combined, a
superior measure of language model quality would result.

3.4.2. Combination of log probability and entropy

In order to develop measures of language model quality which are better correlated with the
word error rate, the information from the probability of the target word and the entropy at
each point in the test text was combined.

Since the entropyH is the negative value of the expected log probability of the forthcoming
word, the values that were combined were the log probability of the target word log2(P(wi |

wi−1
1 )) and the negative entropy−H(wi−1

1 ) =
∑
w P(w | wi−1

1 ) log2(P(w | w
i−1
1 )). These

values were combined using linear interpolation, both in the log domain, leading to a measure
which will be referred to asClog(λ) and after converting back from the log domain, giving a
measure calledClin(λ). If the test text iswn

1, then these measures can be expressed as

Clog(λ) =
1

n

n∑
i=1

[−λH(wi−1
1 )+ (1− λ) log2(P(wi | w

i−1
1 ))] (8)

and

Clin(λ) =
1

n

n∑
i=1

[λ2−H(wi−1
1 )
+ (1− λ)P(wi | w

i−1
1 )]. (9)

The values of these measures were computed for a range of values ofλ. The strength of
the correlation between the resulting measures and word error rate was computed, and the
results are presented in TableVI .

These results show that combining the information from the two sources leads to language
model evaluation measures which are better correlated with the word error rate than either of
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TABLE VI. Correlation of combined measures
with word error rate

r r s T
Clog(0) (Baseline) 0.966 0.955 0.840
Clog(0.05) 0.969 0.960 0.853
Clog(0.1) 0.971 0.965 0.868
Clog(0.2) 0.971 0.964 0.863
Clog(0.3) 0.964 0.957 0.837
Clin(0.001) 0.970 0.962 0.853
Clin(0.002) 0.970 0.963 0.856
Clin(0.01) 0.965 0.955 0.842
Clin(0.02) 0.959 0.952 0.835

the individual measures. In particular,Clog(0.1) performs considerably better than perplexity
in this respect. This clearly demonstrates that information concerning the manner in which
the probability mass is distributed over non-target words is useful in predicting word error
rate.

3.5. Application to language model development

In the mixture-based language model, the interpolation weights assigned to each component
are selected to maximize the likelihood (and hence to minimize the perplexity) of previously
seen text. This has typically led to models which have considerably lower perplexities than
the baseline trigram model, but no decrease in word error rate.

This section has described the development of measures of language model quality which
correlate better with word error rate than perplexity does. Since the ultimate aim of mixture-
based models is to reduce word error rate, the interpolation weights should be chosen with
this in mind. Therefore, we attempt to choose interpolation weights which are optimized with
respect to our new measures.

The probability estimate from the mixture-based model is simply a linear combination of
the probability estimates from a set of component models:

P(wi | w
i−1
i−2) =

k∑
j=0

λ j Pmodel j (wi | w
i−1
i−2) (10)

where “model 0” is the full language model, andk represents the number of components into
which the training text is clustered.

The aim, therefore, is to select interpolation weightsλ j in order to maximize a more ap-
propriate measure. In this case, we aim to maximizeClog(0.1). This technique was applied
to generate new interpolation weights for mixture-based models based on 30 mixture com-
ponents trained on both the broadcast news corpus and the British national corpus. In both
cases, supervised and unsupervised adaptation were applied. Lattice rescoring experiments
were carried out using the resulting interpolation weights. The results are presented in Ta-
ble VII , and are compared with the results of using the conventional maximum likelihood
weights.

These results show that the new weights chosen to maximizeClog(0.1) perform consis-
tently better than the the old maximum likelihood weights. While the difference in perfor-
mance is small, the overall difference between the word error rate optimized and maximum
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TABLE VII. Comparison of word error rates achieved by maximum likelihood
and word error rate optimized interpolation weights

Weights
Training text Adaptation Maximum likelihood WER optimized
Broadcast news Unsupervised 38.2% 38.1%
Broadcast news Supervised 38.0% 37.9%
BNC Unsupervised 42.3% 41.9%
BNC Supervised 41.8% 41.6%

likelihood weights is statistically significant at the 1% level according to the matched pairs
sentence segments word error test (Gillick & Cox, 1989).

4. Conclusions and future work

This paper has investigated the shortcomings of perplexity as a predictor of a language
model’s effect on word error rate, and has proposed alternative measures. Language mod-
els with identical perplexities but which result in significantly different word error rates have
been developed. By investigating the manner in which these models differ, it has been shown
that merely considering the probabilities of the words which occur in the test text is insuffi-
cient to distinguish between them. Instead, relevant information is contained in the probabil-
ities of the alternative words which will compete with the correct word within the decoder.
By also considering this information, it was shown that it is possible to derive measures of
language model quality which are considerably better correlated with word error rate than
perplexity is. It was further shown that the recognition performance achieved using mixture-
based language models was increased when the mixture weights were chosen to optimize
these new measures rather than perplexity.

There are many ways in which this information about the probabilities of alternative words
could be used in measures of language model quality, and only a few of these have been
investigated in this paper. There is therefore a good deal of scope for developing measures
which correlate even more strongly with word error rate. Such improved measures will be
useful in themselves, and are likely to lead to further-improved language models.

The authors wish to thank Roni Rosenfeld, Kristie Seymore and Stan Chen of Carnegie Mellon Univer-
sity for many useful and informative discussions.
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