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Abstract

We investigate the enhancement of speech corrupted by unknown independent additive noise when only a single

microphone is available. We present adaptive enhancement systems based on an existing non-adaptive technique

[Ephraim, Y., 19992a. IEEE Transactions on Signal Processing 40 (4), 725±735]. This approach models the speech and

noise statistics using autoregressive hidden Markov models (AR-HMMs). We develop two main extensions. The ®rst

estimates the noise statistics from detected pauses. The second forms maximum likelihood (ML) estimates of the un-

known noise parameters using the whole utterance. Both techniques operate within the AR-HMM framework.

We have previously shown that the ability of AR-HMMs to model speech can be improved by the incorporation of

perceptual frequency using the bilinear transform. We incorporate this improvement into our enhancement systems.

We evaluate our techniques on the NOISEX-92 and Resource Management (RM) databases, giving indications of

performance on simple and more complex tasks, respectively. Both enhancement schemes proposed are able to improve

substantially on baseline results. The technique of forming ML estimates of the noise parameters is found to be the most

e�ective. Its performance is evaluated over a wide range of noise conditions ranging from ÿ6 to 18 dB and on various

types of stationary real-world noises. Ó 2000 Elsevier Science B.V. All rights reserved.

R�esum�e

Nous explorons des m�ethodes d'am�elioration de la parole alt�er�ee par un bruit additif ind�ependant avec une source

unique. Nous pr�esentons des syst�emes d'am�elioration adaptative bas�es sur une technique non-adaptative [Ephraim, Y.,

19992a. IEEE Transactions on Signal Processing 40 (4), 725±735]. Cette approche permet de construire des mod�eles

statistiques de la parole et du bruit en utilisant des mod�eles de Markov cach�es auto-regressifs. Nous d�eveloppons deux

m�ethodes principales. La premi�ere m�ethode estime les mod�eles statistiques du bruit �a partir des silences d�etect�es. La

deuxi�eme cr�ee des estimations du maximum de vraisemblance des param�etres du bruit inconnu en utilisant l'ensemble

de la phrase. Les deux techniques op�erent sur un sch�ema auto-regressive hidden Markov models (AR-HMM ).

Nous avons montr�e pr�ec�edemment que les possibilit�es des AR-HMMs pour mod�eliser la parole pouvaientêtre

am�elior�ees en incorporant une fr�equence de perception utilisant une transform�ee bilin�eaire. Nous introduisons cette

correction dans nos syst�emes d'am�elioration de la parole.

Nos approches sont �evalu�ees sur les bases de donn�ees NOISEX-92 et Resource Management, en donnant des in-

dications de la performance respectivement sur des taches simples et complexes. Les deux sch�emas permettent

d'am�eliorer les r�esultats de base. La technique qui cr�ee des estimations ML des param�etres du bruit apparâit être la plus

e�cace. Son e�cacit�e est �evalu�ee sur une large vari�et�e de bruits allant de ÿ6 dB �a 18 dB et sur divers types de bruit

stationnaires r�eels. Ó 2000 Elsevier Science B.V. All rights reserved.
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Zusammenfassung

Adaptive Model-Basierende Sprachverbesserung

Wir untersuchen die Verbesserung von Sprache die durch eine unbekanntes unabhaengiges additives Geraeusch

gestoert ist fuer den Fall, dass nur ein einzelnes Mikrophone verfuegbar ist. Wir presentieren ein adaptives Verbe-

sserungssystem basierend auf existierenden nicht-adaptiven Verfahren [Ephraim, Y., 19992a. IEEE Transactions on

Signal Processing 40 (4), 725±735]. Dieser Ansatz modelliert the Sprach und Geraeusch Verteilung durch Benutzung

von auto-regressiven ``hidden Markov'' Modellen (AR-HMMs). Wir haben zwei Haupterweiterungen entwickelt. Die

erste bestimmt die Geraeuschstatistik von erkannten Pausen. Die zweite Erweiterung bestimmt ``maximum likelihood

(ML)'' Bewertungen der unbekannten Geraeuschparameter basierenden auf der gesamten Aeuzerung.

Wir haben bereits gezeigt, dass die Faehigkeit von AR-MMs Sprache zu modellieren, verbessert werden kann durch

Beruecksichtigung von wahrnehmbaren Frequenzen unter Verwendung der bilinearen Transformation. Wir haben diese

Verbessung in unser Erweiterungssystem einbezogen.

Wir bewerten den Erfolg unserer Methoden fuer die NOSEX-92 und ``Resource Management (RM)'' Datenbanken,

resultierend in Bewertungen fuer einfache (im Falle von NOSEX-92) und schwerere Faelle (im Falle von RM). Beide

Erweiterungsmethoden erzielen wesentliche Verbesserung wenn verglichen mit Resultaten von Basisverfahren. Es stellt

sich heraus, dass die ML Bewertung der Geraeuschparameter die erfolgreichste Methode ist. Ihre Leistung is bestimmt

fuer eine weite Spanne von Geraeuschbedingungen (von ÿ6 dB bis 18 dB) und fuer verschiedene Arten von stationaeren

``real-world'' Geraeuschen. Ó 2000 Elsevier Science B.V. All rights reserved.

Keywords: Speech enhancement; Autoregressive hidden Markov models; Robust speech recognition

1. Introduction

As speech systems have evolved from labora-
tory demonstrations to real-world applications,
the need to maintain performance in a wide variety
of situations has emerged. Speech enhancement
provides one way of compensating for di�erent
environments. It has therefore been investigated
by many researchers in recent years (e.g., Gong,
1995).

In this paper, we study enhancement of speech
corrupted by additive noise. Our focus is on the
situation where the noise statistics are unknown
and only one microphone is used. This case is
important if speech enhancement is to be used in
many real-world systems.

Approaches to speech enhancement can be
classi®ed according to the models used to describe
the speech and corrupting noise, and the amount
of prior information incorporated into these
models. The trend in recent years has been to use
models of increasing sophistication. One such ap-
proach is proposed in (Ephraim, 1992a). This
technique models the speech and noise using

autoregressive hidden Markov models (AR-
HMMs).

We believe the ability to incorporate prior
speech information to be one of the main advan-
tages of this enhancement technique. An HMM-
based algorithm (Ephraim et al., 1989) has been
shown to be superior to spectral subtraction ac-
cording to Mean Opinion Score evaluations over
several noise types (Sheikhzeheh et al., 1994). The
approach also has other advantages which make it
especially suited to adaptive algorithms. These will
become clear in the subsequent discussion.

We present here two extensions to the technique
in (Ephraim, 1992a) to make it adaptive. These are
based on two main classes of environmental
compensation: detecting speech-free portions of
the signal and using these to estimate the inter-
fering noise; and making a maximum likelihood
(ML) estimate of the noise parameters within a
statistical framework.

Pause detection is often cited as means to ob-
tain unknown noise statistics (e.g., Sheikhzeheh et
al., 1995). While methods based on energy levels
and zero-crossing measures are well established,
these techniques tend to rely on thresholds which
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limit their usefulness in unknown environments
(e.g., Deller et al., 1993). Recent work shows that
HMMs can be used to more e�ectively detect
pauses in noise (McKinley and Whipple, 1997). In
(Logan and Robinson, 1996) we develop an
adaptive enhancement system using HMM-based
pause detection. In this current paper, we present a
more thorough description of our preliminary
work with extended results.

ML parameter estimation has been successfully
applied to the task of adaptation for speech and
speaker recognition (e.g., Lee, 1997). For these
applications, schemes based on cepstral features
have received the most attention. For example,
stochastic matching compensates for unknown
convolutional noise (Sankar and Lee, 1996). Here
the ML equations are easily solved since speech
and noise are additive in this domain.

For the case of additive noise however, working
with cepstral features is less trivial. This is because
the non-linearity introduced by the logarithm
when forming cepstral features makes estimation
of unknown parameters using ML mathematically
unattractive. In this case, the logarithm must ei-
ther be approximated by functions, or numerical
techniques used to solve for the unknown param-
eters (A®fy et al., 1997; Mokbel, 1997; Moreno et
al., 1995).

The problem of adapting to additive noise is
easier in the linear spectral domain where again
stochastic matching can also be applied (Lee,
1997). However, the distance measure used in this
domain is the spectral di�erence measure which is
inferior to the log spectral di�erence used in the
cepstral domain (Rabiner and Juang, 1993).

Enhancement schemes traditionally work in
domains which are mathematically suited to ad-
ditive noise. For example, (Ephraim, 1992a) uses
AR-HMMs. These models feature vectors which
are additive. Additionally, they use the Itakura±
Saito distance measure which is related to the log
spectral distance measure. We therefore construct
a ML adaptive enhancement scheme based on
these models. We have published preliminary re-
sults in (Logan and Robinson, 1997a).

Several other adaptive enhancement algorithms
which make ML estimates of the unknown pa-
rameters have been proposed (Lee et al., 1995;

Gannot, 1998; Lee et al., 1996). These approaches
estimate the enhanced speech within a Kalman
®lter framework. Kalman ®lters, like the Wiener
®lters used in (Ephraim, 1992a) give the MMSE
estimate of the clean speech. However, there is
scope in the framework of Ephraim (1992a) to
form other estimators. For example, if the en-
hancement system is used as a front end to a clean
speech recogniser, then spectral-based estimators
are more applicable (Logan and Robinson, 1998).

In related work, we have presented an extension
to AR-HMMs to improve their ability to model
speech (Logan and Robinson, 1997b). In this
previous work, we incorporate perceptual fre-
quency into the AR-HMM framework and show
that this improves recognition performance of a
clean speech AR-HMM system. In this current
paper, we describe the way in which perceptual
frequency can be incorporated into our enhance-
ment systems.

The organisation of our paper is as follows. We
®rst brie¯y describe the non-adaptive enhancement
scheme presented in (Ephraim, 1992a). We then
describe our two extensions to make this technique
adaptive. In the following section, we describe the
incorporation of perceptual frequency into these
enhancement schemes.

Sections 5 and 6 detail experimental results.
Speci®cally, we investigate the performance of
both the enhancement scheme based on detected
pauses and that based on ML noise model esti-
mates. Further, we contrast the e�ect of using
word-based speech models to that of more general
speech models. We show results for both small and
medium vocabulary systems. Finally, we present
conclusions and suggestions for future work.

2. Foundations

We begin with the framework presented in
(Ephraim, 1992a). Here, clean speech and noise
are modelled using AR-HMMs (Juang, 1984; Ju-
ang and Rabiner, 1985). The pdfs for these pro-
cesses are:
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p�S� �
X

X

ax0x1

YT

t�1

axtxt�1
bxt�st�; �1�

p�D� �
X

~X

a~x0~x1

YT

t�1

a~xt~xt�1
b~xt�d t�; �2�

where S is a sequence of K-dimensional clean
speech observations, X a sequence of clean speech
states, axtxt�1

the transition probability from state xt

to state xt�1 and bxt�st� is the pdf of the output
vector st from the state xt. Similarly D is a sequence
of noise observations and ~X is a sequence of noise
states.

The pdfs bxt�st� and b~xt�d t� are assumed
Gaussian with zero mean and covariance matricesP

xt
and

P
~xt

, respectively. Since the processes are
assumed autoregressive, these covariance matrices
are dependent on only P � 1 parameters where P is
the order of the autoregressive process (Juang,
1984).

We can combine these speech and noise models
to produce a model for noisy speech. The pdf for
this model is given by

p�Y� �
X

�X

a�x0�x1

YT

t�1

a�xt�xt�1
b�xt�yt�; �3�

where Y is a sequence of noisy observations and �X
is a sequence of composite states with �x � �xt;~xt�.
For additive, statistically independent noise we
have:

Y � S �D; �4�
a�xt�xt�1

� axtxt�1
a~xt~xt�1

; �5�
b�xt�yt� �

Z
b~xt�yt ÿ st�bxt�st�dst; �6�

where the pdf b�xt�yt� is Gaussian with zero mean
and covariance matrix

P
�x given byX

�x

�
X

x

�
X

~x:

�7�

We can write the conditional pdf of st given Y as

p�stjY� �
X

�xt

p��xtjY�b�xt�stjyt� �8�

and thus the MMSE estimate of st given Y is given
by

ŝt �
X

�xt

p��xtjY�H�xt yt; �9�

where H�xt yt is the MMSE estimate of the signal st

given yt. H�xt is the Wiener ®lter formed using the
statistics of the composite state �xt. Thus the
MMSE estimator is given by the weighted sum of
Wiener ®lters for each combination of speech and
noise states, weighted by the posterior probability
of that combination. Other state-based estimators,
such as the MMSE spectral amplitude estimator or
MMSE log spectral amplitude estimator can also
be used instead of Wiener ®lters (Ephraim, 1992a).

3. Adaptive speech enhancement schemes

We now present two extensions to the work in
(Ephraim, 1992c) which enable it to adapt to un-
known noise. The ®rst extension estimates the
noise statistics using portions of the corrupted
signal which have been identi®ed as pauses or `si-
lence'. The autoregressive probability framework
is used for the pause detection. The second scheme
makes a ML estimate of the noise parameters
within this framework. We assume that the noise
statistics are stationary for the duration of the
signal to be enhanced.

3.1. Adaptive speech enhancement using detected
pauses

If the clean speech model incorporates a model
for silence then the compensated model (Eq. (3))
can be used to make a decision about whether a
given frame is speech or noise. For example, Vi-
terbi alignment can be performed on the noisy
utterance given the compensated model and the
labels `speech' and `pause' assigned to each frame.
If this model was perfect, then the frames labelled
as pauses would give good estimates of the noise
statistics. This idea forms the basis of a simple
adaptive enhancement system.

Fig. 1 shows the algorithm for the system.
Frames labelled as pauses are used to reestimate
the noise statistics. These statistics are then used to
form a new compensated model, and the process
repeated. When the likelihood of the utterance
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given the compensated model has converged, the
speech is enhanced using state dependent estima-
tors.

In this work, we consider two of the estimators
proposed in (Ephraim, 1992a): the Wiener ®lter
and a MMSE power spectral density (PSD) esti-
mator. The Wiener ®lter for composite state �xt;~xt�
is given by

Hxt ;~xt �
jFxt j2

jFxt j2 � jF~xt j2
; �10�

where jFxt j2 and jF~xt j2, the power spectral densities
of the speech and noise states, are estimated using
the autoregressive parameters of states xt and ~xt,
respectively.

The expected PSD of the clean speech at time t
given the noisy observations is given by (Ephraim,
1992a)

EfjStj2jyt; xt;~xt; kg � Hxt ;~xt jFxt j2 � jHxt ;~xt Ytj2; �11�
where Yt is the short-term Fourier transform of the
noisy observation at time t.

The required noise statistic is the noise auto-
correlation function for each noise state r~x since
this is used to generate autoregressive parameters
for the noise model. We only consider stationary
noise modelled by single state HMMs. We there-
fore obtain this statistic from the average of the
frames labelled as pauses as follows:

r0~x �
P

`silence' frames rframe

number `silence' frames
:s �12�

3.2. Maximum likelihood noise estimation

The algorithm described in the previous section
does not guarantee convergence of the likelihood
of the speech utterance given the models. It is also
sensitive to modelling errors. We thus turn to a
more formal noise estimation scheme.

As described in Section 1, the AR-HMM
framework is a good starting point for ML pa-
rameter estimation scheme because it models fea-
tures which are additive, yet it compares features
using the Itakura±Saito distortion measure. In this
section, we show that the technique of Rose et al.
(1994) can be combined with the work of Ephraim
to develop an enhancement scheme which can
adapt to unknown noise. This is possible because
the required likelihood is a linear function of the
autocorrelation coe�cients.

The procedure closely follows the work in (Rose
et al., 1994) but applies it for the ®rst time to AR-
HMMs. A full description of the technique is given
in (Logan, 1998). To simplify notation, a single
mixture component per HMM state is assumed.
The extension to multiple mixture systems is
straightforward.

Following the method of (Rose et al., 1994), a
model for a sequence of noisy observations Y is
derived as:

P�Y jk� �
X

X

X
~X

Z Z
C

P �S;D;X ; ~X jk�dS dD:

�13�

The de®nition of symbols is as before. k refers
generally to the model parameters: faxtxt�1

g;
fa~xt~xt�1

g; fPxg and fP~xg. The contour of inte-
gration C is taken over all possible combinations
of speech and noise which can form the noisy
observation. In this case, additive combinations
are considered so C : S � D � Y . Given this model,
the noise parameters are chosen to maximise the
likelihood of the observed data. That is, we ®nd a
new estimate of k, k0, which maximises P �Y jk�.

No closed form solution exists for this maxi-
misation problem. We thus follow the method of
Baum et al. (1970) and iteratively maximise an
auxiliary function Q�k; k0� with respect to k0. Here,
Q��� is given by

Yes

No
Converged ?

Likelihood

Reestimate noise models
using detected pauses

Initialise Noise Models

probability of each state
noise models to determine

Enhance speech using
estimators formed from
speech and noise models

Use combined speech and

Fig. 1. Basic adaptive enhancement algorithm.
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Q�k; k0� � Eflog P �S;D;X ; ~X jk0�jY ; kg: �14�
To estimate the noise parameters, we need only
maximise Q��� with respect to fa~xs~xs�1

g and fP~xg.
Consider ®rst the maximisation of Q��� with

respect to fa~xs~xs�1
g. As described in (Logan, 1998),

the new estimate of a~xs~xs�1
is obtained using

a0~xs~xs�1
�
PT

t�1 p�~xt � ~xs;~xt�1 � ~xs�1;Y jk�PT
t�1 p�~xt � ~xs;Y jk�

: �15�

Thus the transition probability a~xs~xs�1
is reestimat-

ed as the sum over all observations of the joint
likelihood of state xs at time t and state xs�1 at time
t � 1 and the observation sequence Y , scaled by
the sum over all observations of the joint likeli-
hood of state xs at time t and the observation se-
quence Y .

Now consider the estimation of fP~xg. Because
the noise is assumed to be modelled by an auto-
regressive process, each

P
~x can be calculated using

the autocorrelation function for state ~x, r~x. We
reestimate this statistic as described in (Logan,
1998) using the following equation for each noise
state ~x:

r0~x �PT
t�1

P
8x p�xt � x;~xt � ~x;Yjk�Efr~xjyt; xt � x;~xt � ~x;kgPT

t�1

P
8x p�xt � x;~xt � ~x;Yjk� :

�16�
Thus the reestimated autocorrelation function

is given by the sum over all observations and all
clean speech states of the expected value of the
autocorrelation function given the particular
speech state and noise state, weighted by the joint
likelihood of being in that speech and noise state at
time t and the observation Y .

Note that the forms of Eqs. (15) and (16) are
similar to the usual parameter reestimation for-
mulae for AR-HMMs (Juang, 1984) and to the
reestimation equations for Gaussian mixture
models presented in (Rose et al., 1994).

For stationary noise, only maximisation with
respect to

P
~x is required. In this case,

p�xt � x;~xt � ~x;Y jk� can be calculated using the
usual forward±backward equations (e.g., Rabiner
and Juang, 1993).We can also approximate
p�xt � x;~xt � ~x;Y jk� by noting that often one state

sequence dominates P �Y ;X ; ~X jk� (Merhav and
Ephraim, 1991). p�xt � x;~xt � ~x;Y jk� can thus be
replaced by either one or zero depending on
whether xt is part of the dominant state sequence.
Therefore Eq. (16) becomes

r0~x �
PT

t�1 Efr~xjyt; xt � x�t ;~xt � ~x; kg
T

; �17�

where x� � fx�t ; t � 1; . . . ; Tg is the most likely
clean speech state sequence. This can be found by
performing Viterbi alignment using the compen-
sated model on the noisy observations.

The expected value of the autocorrelation
function given the composite state �xt;~xt� and yt is
most easily obtained from the expected value of
the noise PSD function jDj2. jDj2 forms a Fourier
transform pair with the autocorrelation function
which is convenient since it is simpler to work in
the frequency domain. Thus the term
Efr~xjzt; xt � x�t ;~xt � ~x; kg in Eq. (17) can be evalu-
ated as the inverse Fourier transform of
EfjDj2jys; xs � x�t ;~xs � ~xt; kg.

This can be estimated as shown in (Ephraim,
1992a). Here, the expected value of the kth com-
ponent of jDj2 is given by

E jDkj2jys; xs

n
� x�t ;~xs � ~xt; k

o
� Hx�t ;~xt ;kjFx�t ;kj

2 � jHx�t ;~xt ;kYt;kj2; �18�

where Hxt ;~xt ;k is the kth component of the Wiener
®lter for the composite state �xt;~xt�, jFxt ;kj2 the kth
component of the Fourier transform of the auto-
regressive coe�cients for clean speech state xt and
Yt;k is the kth component of the Fourier transform
of the noisy observation at time t. This Wiener
®lter is designed to return the MMSE estimator of
the noise, so its transfer function is given by

Hx�t ;~xt ;k �
jF~xt ;kj2

jFx�t ;kj2 � jF~xt ;kj2
: �19�

Eq. (18) is derived assuming that the covariance
matrices

P
x and

P
~x of the speech and noise

processes are circulant. This assumption holds
assuming su�ciently large K (Ephraim, 1992b).

The new adaptive enhancement algorithm op-
erates as shown in Fig. 2. Comparison of Fig. 1
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with Fig. 2 shows that the only di�erence between
the systems is the technique of noise reestimation.

4. Incorporation of perceptual frequency

In (Logan and Robinson, 1997b) we improve
the modelling power of AR-HMMs by incorpo-
rating perceptual frequency. That is, we use a
perceptual frequency scale when calculating the
distortion between an observation and a trained
model. We show that this improves the perfor-
mance of clean speech recognition systems sub-
stantially.

We incorporate perceptual frequency into AR-
HMM systems using the bilinear transform to
perform the frequency warping (Oppenheim and
Johnson, 1972). This transform has previously
been used to improve the performance of linear
prediction coding systems (Strube, 1980) and LPC-
cepstral recognition systems (Shikano, 1985),
(Mokbel and Chollet, 1995).

The bilinear transform converts a time sequence
to a new sequence with a warped spectrum. By
adjusting the so-called warping factor, the degree
of warping can be made to be a very good ap-
proximation to the perceptually meaningful Bark
scale.

We apply the transform to autocorrelation co-
e�cients as described in (Strube, 1980). For our
given sampling rate of 16 kHz, we use a warping
factor of 0.57. The `warped' autocorrelation coef-
®cients are then used to determine LPC coe�cients
in the usual way and thus train `warped' AR-
HMMs. These warped models can be used in

perceptual frequency recognition or enhancement
systems. In (Logan and Robinson, 1997b), the
focus is mainly on clean speech recognition per-
formance. In this paper, we discuss the construc-
tion of enhancement systems.

4.1. Perceptual frequency AR-HMM enhancement
systems

Our enhancement systems employ a weighted
sum of estimators, where the weights are calcu-
lated using the pdf of a compensated AR-HMM
given the noisy observations. Until now this
compensated AR-HMM has used a linear fre-
quency scale. Using a perceptual frequency scale
however leads to a more accurate model, hence a
better choice of ®lters for enhancement (Logan,
1998). We therefore construct a perceptual fre-
quency enhancement system as shown in Fig. 3.

Note here that we use the warped models in
conjunction with warped observations for the
probability calculations, while non-warped (i.e.,
unprocessed) AR-HMMs are used to construct the
state-based estimators. We perform estimation in
the non-warped domain because it is computa-
tionally expensive to warp and unwarp time do-
main observations.

Yes

No
Converged ?

Likelihood

Initialise Noise Models

Use combined speech and
noise models to determine
probability of each state

Enhance speech using
estimators formed from
speech and noise models

Form maximum likelihood
estimates of noise parameters

Fig. 2. Improved adaptive enhancement algorithm.

Warped
Noise
Models

Warped
Speech
Models

Speech
Models Models

Noise

Speech
Noisy Enhanced

Speech

for each composite
state

estimators

Weighted sum
of estimators

Warp

Probability of
each composite
state given the
noisy speech

Warped models

Compensated

Fig. 3. A perceptual frequency enhancement system. Here the

weights for each estimator are determined using perceptual

frequency AR-HMMs. The estimators themselves are con-

structed using non-warped AR-HMMs.
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We therefore need to obtain unwarped versions
which correspond exactly to each warped speech
and noise model for use with the non-warped ob-
servations. However, it is never possible to exactly
unwarp a given model because the warping process
transforms a ®nite sequence to an in®nite sequence
(Oppenheim and Johnson, 1972). We could un-
warp the ®lters directly by sampling the warped
spectrum but again mismatch is introduced.

We wish to minimise any mismatch introduced
by the unwarping process because one of our
evaluation procedures is the performance of the
enhanced speech with a standard clean speech
recogniser. We therefore use parallel warped and
non-warped models and train the non-warped
versions using single pass retraining.

Given a set of models, single pass retraining
(e.g., Young et al., 1996) generates a parallel set of
models using di�erent training data. This is
achieved by computing the state probabilities us-
ing the original models and the original training
data, but then switching to a new set of training
data to compute parameter estimates for the new
model. Thus given parallel warped and non-
warped observations and warped models, non-
warped models which correspond exactly to the
warped models can be trained.

The enhancement process now requires warped
and non-warped observations. We use the warped
observations in conjunction with warped models
to calculate the probability of each composite
state. The statistics of each state in the corre-
sponding non-warped model are then used to
construct estimators which operate on non-warped
observations.

In order to implement the adaptive enhance-
ment schemes described in the previous section, we
estimate the noise models in parallel in both the
warped and non-warped domains. We again use
the compensated warped models in conjunction
with warped observations for all probability cal-
culations.

5. Small vocabulary experiments

To evaluate our systems we ®rst conduct small
vocabulary, speaker dependent enhancement ex-

periments. We use the male isolated digits additive
noise task from the NOISEX-92 database (Varga
et al., 1992). This database contains clean speech
from two speakers, one male and one female, and
the same speech corrupted by various noise
sources at SNRs ranging from ÿ6 to 18 dB. The
SNR values are de®ned by NOISEX and based on
auditory weighting. The database is generated by
adding the noise to the clean speech hence speech
artifacts due to speaker stress in noise are not
present. We consider the following four stationary
additive noise sources: Lynx helicopter noise;
speech noise; car noise and F16 aircraft noise.

Our primary evaluation metric is the clean
speech recognition performance of the enhanced
speech. This quantitatively describes how e�ective
each enhancement scheme would be if used as a
front end to a clean speech recognition system. We
use a standard clean speech MFCC recognition
system for recognition tests, deriving the enhanced
MFCC features directly from the enhanced spectra
without resynthesising the speech in the time do-
main.

We additionally quantitatively measure per-
ceptual improvements using the Itakura distortion
measure (e.g., Gray et al., 1980). This measures the
frame-by-frame distortion between each enhanced
signal and the corresponding clean speech. We
report the distortion averaged over the entire ut-
terance and additionally over only the speech
portions. We refer to these measures as `All' and
`Speech' distortion, respectively.

Although we did not conduct formal listening
tests, we informally noted a great deal of correla-
tion between the quantitative results and percep-
tual improvements. As discussed in Section 3.1 we
experimented with two of the estimators described
in (Ephraim, 1992a): the Wiener ®lter and a
MMSE PSD estimator. In all our experiments, we
observed that the former estimator gives percep-
tually more pleasing speech as it tends to suppress
noise in non-speech regions more thoroughly.
Conversely, the MMSE PSD estimator produces
enhanced speech which gives superior performance
with a clean speech recogniser. This is because the
clean speech recognition system is strongly in¯u-
enced by errors in the spectral domain. We there-
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fore use the MMSE PSD estimator to produce all
the quantitative results described here.

The following sections discuss our experiments
in detail. We investigate our two noise estimation
schemes and examine two di�erent ways of mod-
elling the clean speech: using word-based models
and using general mixture models.

To enhance legibility, we show summarised re-
sults. These are the distortion measures and rec-
ognition error rates averaged over all noise types
for each SNR. In these tables, D, S and I are the
percentage of deletion, insertion and substitution
errors, respectively. The error rate is given by:
%Error � D� S � I . We perform statistical ana-
lyses on selected results using the Matched-Pairs
test (Gillick and Cox, 1989) at a con®dence level of
95%.

5.1. Clean speech word-based AR models

Both warped and non-warped clean speech AR-
HMMs are required for the enhancement systems.
We initially construct word-based models. We use
an 8-emitting state left-to-right HMM model for
each digit and a 1-emitting state model for silence.
We use autoregressive models of order 20 and 2
mixture components per state.

The speech is parameterised using frames of 32
ms with overlap of 16 ms. These parameters are
chosen to be convenient for construction of en-
hanced time domain waveforms. The models are
trained on 100 clean digit utterances. The standard
Baum±Welsh algorithm is used for training the
warped models and single pass retraining is used to
train the non-warped models as described in Sec-
tion 4.1.

5.2. Noise AR models

We model each type of noise using a single state
AR-HMM with autoregressive order 20. Each
model is initialised by assuming that the whole
utterance is noise.

5.3. MFCC recognition system

We use a standard MFCC HMM recognition
system to evaluate the clean speech recognition
performance of the enhanced speech. We construct
this using the HMM Toolkit V1.5 (Young et al.,
1993). Again we use an 8-emitting state left-to-
right HMM model for each digit and a 1-emitting
state model for silence. We model 15 cepstral co-
e�cients including the zeroth coe�cient using one
mixture component per state and diagonal co-
variance matrices. Again the speech is parameter-
ised using frames of 32 ms with overlap of 16 ms.

Again we use the standard Baum±Welsh algo-
rithm for training. Connected word Viterbi de-
coding is used for recognition (i.e., not isolated
word recognition). The syntax for the recognition
network is constrained to be a string of digits each
separated by silence.

The models are trained using 100 clean digit
utterances. Recognition experiments are conduct-
ed on 100 enhanced digits for each noise type at
each SNR ranging from ÿ6 to 18 dB, giving 400
test digits for each of these SNRs. For processing
the digits are grouped into 5 ®les of 20 digits each.

5.4. Baseline performance

We ®rst investigate the distortion measures and
performance of the MFCC recognition system

Table 1

Itakura distortions and word error rates for clean speech and speech corrupted by the four noises recognised using clean and matched

MFCC models

SNR (dB) Distortion % Error �D; S; I�
Overall Speech Clean MFCC models Matched MFCC models

1 0.00 0.00 0.00 (0, 0, 0) 0.00 (0, 0, 0)

18 0.66 0.34 54.50 (14.25, 24.25, 16) 0.00 (0, 0, 0)

12 0.84 0.55 77.00 (22, 40, 15) 0.00 (0, 0, 0)

6 0.99 0.78 92.00 (92, 0, 0) 0.25 (0, 0.25, 0)

0 1.10 1.00 95.00 (95, 0, 0) 2.50 (0, 2.5, 0)

)6 1.18 1.18 95.00 (95, 0, 0) 32.50 (9.25, 20.25, 3)
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when no enhancement is applied. Table 1 shows
the summary distortion and recognition error rates
for clean and noisy speech. Results for both clean
and matched MFCC models are shown. Here
`matched' refers to the situation when the training
and testing conditions are identical. We obtain the
matched models using single pass retraining for
each noise type at each SNR.

These recognition results are obtained by opti-
mising the insertion penalty and another parame-
ter, the silence probability increment, for each test
condition. This latter parameter, described in
(Seymour, 1996), weights the log observation
probability of the silence model by a ®xed value to
improve the chance of low energy frames at word
boundaries being recognised correctly as silence.

We see from the results that the performance of
the clean speech recognition system degrades rap-
idly in the presence of noise. The matched model
performance gives an indication of the improve-
ment possible using enhanced speech.

5.5. Word-based models

We now investigate the performance of en-
hancement systems containing word-based clean
speech models. For these experiments, we use the
recognition network combined with Viterbi align-
ment to obtain the most likely speech and noise
state for each frame given the noisy observation.
The most likely mixture component given this
state is then determined. The speech and noise
statistics for this mixture component are then used
to construct estimators for enhancement. These
statistics are also used for the ML noise estimation
scheme.

We found that the optimal insertion penalty
used during Viterbi alignment varied according to
the noise type and SNR. However, the SNR is the
dominating factor with deletions more prominent
at low SNRs and insertions more prominent at
high SNRs. In order to automatically select the
best penalty for testing, we ®rst determine the
optimal mapping between SNR and insertion
penalty for each enhancement system using the
training utterances. When testing, we approximate
the SNR for each test utterance using the NIST
tool wavmd. 1 This is then mapped to an insertion
penalty.

5.5.1. Noise estimation from detected pauses
We ®rst investigate the enhancement scheme

described in Section 3.1 which estimates the noise
from detected pauses. The performance of this
system is summarised in Table 2. The results
demonstrate considerable improvement over the
clean speech model results in Table 1. It should be
noted though that the performance falls short of
the matched model results in this table.

5.5.2. Maximum likelihood noise parameter estima-
tion

We next investigate the ML parameter estima-
tion scheme described in Section 3.2. Table 3
summarises the performance of this system. These
results are signi®cantly better than those from the
technique of estimating the noise from the detected
pauses. They are also comparable to the matched
model baseline results in Table 1. We thus con-

1 wavmd is available as part of the Sphere 2.5 software

package from NIST at http://www.itl.nist.gov.

Table 2

Itakura distortions and word error rates for corrupted speech enhanced adaptively using detected pauses to estimate the noise; MMSE

PSD estimation and word-based HMMs

SNR (dB) Distortion % Error �D; S; I�
All Speech MFCC models

18 0.22 0.17 1.75 (0, 1.25, 0.5)

12 0.34 0.23 6.00 (0, 5.25, 0.75)

6 0.61 0.40 17.75 (0.5, 15, 2.25)

0 0.97 0.77 51.25 (33, 17.75, 0.5)

)6 1.20 1.00 73.50 (25, 27.25, 21.25)
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clude that the extra complexity of the ML tech-
nique is justi®ed.

5.6. General speech models

We now investigate the e�ect of using more
general speech models in the enhancement system.
Here, `general' refers to a model which is trained
on clean speech without prior knowledge of the
words spoken. In this case, we use an ergodic two-
state HMM. The ®rst state models speech using
128 mixture components and the second state
models silence using a single mixture component.
Transitions between the states are freely allowed.
We concentrate on the ML noise parameter esti-
mation scheme since this has been shown to have
superior performance.

We construct warped and non-warped clean
speech AR-HMM models. The warped AR-HMM
models are initialised using single pass retraining
from a MFCC system with identical topology. The
speech state of this MFCC system is trained using
K-means clustering on 100 clean digits. After ini-
tialisation, the warped AR HMMs are reestimated
using Baum±Welch reestimation. Single pass re-

training is then used to train the non-warped AR
models from the warped AR models as before.

In the previous experiments, Viterbi alignment
is used to obtain the most likely speech and noise
states corresponding to each frame. This was log-
ical as we had word-based models and so could
perform recognition using the compensated AR-
HMMs to determine the best state-frame align-
ment to use for enhancement.

With the more general speech models used here,
we instead determine the posterior probability of
each mixture component using the forward±
backward equations (e.g., Rabiner and Juang,
1993). This probability is then used to construct a
weighted sum of estimators for noise reestimation
and enhancement.

Table 4 summarises the results for a 128-mix-
ture enhancement system using ML noise param-
eter estimates. These results are inferior to the
word-based system despite having a comparable
number of parameters. Thus we conclude that
some performance is sacri®ced by the use of sim-
pler speech models in the enhancement system.

We experimented with increasing the number of
mixture components in the speech model and with

Table 3

Itakura distortions and word error rates for corrupted speech enhanced adaptively using ML noise parameter estimation; MMSE PSD

estimation and word-based HMMs

SNR (dB) Distortion % Error �D; S; I�
All Speech MFCC models

18 0.13 0.12 0.00 (0, 0, 0)

12 0.18 0.18 0.00 (0, 0, 0)

6 0.26 0.27 0.50 (0, 0.5, 0)

0 0.39 0.42 6.25 (0.25, 3.5, 2.5)

)6 0.63 0.69 26.50 (7.5, 13.25, 5.75)

Table 4

Itakura distortions and word error rates for corrupted speech enhanced adaptively using ML noise parameter estimation; MMSE PSD

estimation and general HMMs; 128 mixture components

SNR (dB) Distortion % Error �D; S; I�
All Speech MFCC Models

18 0.15 0.13 2.50 (0.75, 1.5, 0.25)

12 0.25 0.22 15.75 (4,11, 0.75)

6 0.43 0.37 51.50 (23.25, 25.75, 2.5)

0 0.67 0.56 78.75 (68.5, 10.25, 0)

)6 0.90 0.79 85.75 (83, 2.75, 0)
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introducing more temporal information by mod-
elling the speech using several states. This latter
variation was the most e�ective.

Table 5 shows the performance for a 33-state
model. The ®rst 32 states contain 4 mixture com-
ponents each and model the speech. The ®nal state
contains a single mixture component and models
silence as before. The training procedure for this
model is di�erent to the 128 mixture component
case. Here, the warped AR-HMM is trained by
continually splitting mixture components from an
initial single mixture system. The non-warped AR-
HMM is trained using single pass training as be-
fore. The results for this system are signi®cantly
better than the 128 mixture component system.
Thus there appears to be some advantage in add-
ing temporal information. However, the perfor-
mance of this system is still substantially worse
than the word-based scheme.

6. Medium vocabulary experiments

We now investigate the performance of our al-
gorithm on the more challenging Resource Man-
agement (RM) task (Price et al., 1988). This
database is suitable for medium vocabulary
(around 1000 words) continuous speech experi-
ments and contains speaker dependent and
speaker independent data. We use the speaker in-
dependent data for our enhancement experiments.

The training data for the speaker independent
task consists of 100 speakers with 40 utterances
per speaker. The testing data is divided into four
sets each consisting of 300 utterances comprising
30 sentences spoken by 10 speakers. These are la-

belled: ``Feb89'', ``Oct89'', ``Feb91'' and ``Sep92''.
Only clean speech is supplied so noise is added to
the test sets as described below.

We conduct experiments using enhancement
systems based on general speech models. Given the
results of the previous section, we would have
liked to use word or phone based models. How-
ever, we were unable to construct a clean speech
AR-HMM system with su�cient accuracy on the
RM task. We believe this is because our AR-
HMM system does not incorporate frame-to-
frame spectral changes (delta features). Also, only
one variance parameter is determined for each
mixture component unlike MFCC HMM systems
which calculate the variance for each cepstral
component (and indeed delta and acceleration
components). These modelling de®ciencies play a
greater role in this medium vocabulary speaker
independent task than the simple task in the pre-
vious section.

Therefore, we study enhancement schemes
based on general speech models. Only the ML
noise parameter estimation scheme is investigated
since this gives the best performance. We again use
enhanced MFCC parameter recognition perfor-
mance to evaluate our system. We additionally
conduct some informal perceptual tests. All rec-
ognition results shown are for enhancement sys-
tem employing MMSE PSD estimators.
Conversely, all perceptual results are for systems
employing Wiener ®lters.

6.1. Formation of noise corrupted data

We add noise to the test sets to conduct the
enhancement experiments since the RM database

Table 5

Itakura distortions and word error rates for corrupted speech enhanced adaptively using ML noise parameter estimation; MMSE PSD

estimation and general HMMs; 32� 4 mixture components

SNR (dB) Distortion % Error �D; S; I�
All Speech MFCC models

18 0.15 0.14 2.00 (0.25, 1.5, 0)

12 0.22 0.22 10.00 (1, 6, 3)

6 0.34 0.35 30.75 (6.5, 17.5, 6.75)

0 0.57 0.52 63.00 (23.75, 29.75, 9.5)

)6 0.85 0.75 81.00 (45.5, 24, 11.5)
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contains clean speech only. For each test utter-
ance, we extract a random segment of Lynx noise
from the NOISEX-92 database, scale it and add it
to the utterance.

We consider two noise conditions. These cor-
respond to the attenuation of the Lynx noise by 20
and 12 dB, respectively. The NIST utility wavmd is
used to estimate the SNR of the corrupted utter-
ances. This gives average SNRs for the two noise
conditions of 18 and 12 dB.

wavmd estimates the SNR as a log ratio of
speech to noise power where the noise power is
estimated without prior knowledge of the noise
statistics. Therefore, the SNRs determined are
necessarily di�erent to those calculated by NOI-
SEX-92. Fig. 4 shows SNRs calculated using
wavmd on the NOISEX-92 database verses the
quoted SNRs for Lynx noise. We see that for this
noise, wavmd tends to overestimate the SNR
compared to the quoted values, particularly at low
SNRs. This should be borne in mind when com-
paring results from this section with those in Sec-
tion 5.

6.2. Enhancement system

We model clean speech using general mixture
models. Similar to the models described in Section
5.6, we model speech by one or more states with

many mixture components and silence by an ad-
ditional state. The training procedure used is
identical to that described in Section 5.6. We use
the ®rst three utterances for each training speaker
as training data in order to avoid over-training of
the models.

We again use one state noise models. For these
experiments, we initialise these models from the
frame of the test utterance with the minimum
power. This was found to give enhanced speech
which was perceptually superior to that from a
system which initialised the noise using all of the
test frames. A small amount of recognition per-
formance is sacri®ced by this initialisation tech-
nique (about 1% absolute on the 512 mixture
system at 18 dB).

We use the approximation of the state-depen-
dent pdf (b�xtmt�yt�) described in (Sheikhzeheh et al.,
1995) to calculate the compensated models. This
assumes that the autocorrelation function of each
state of the compensated model can be approxi-
mated by the sum of the corresponding speech and
noise autocorrelation functions. This approxima-
tion is necessary to make the system computa-
tionally tractable.

6.3. MFCC recognition system

The clean MFCC recognition system used for
performance evaluation is trained using the RM
Toolkit as a template (Young et al., 1993). A 5
mixture component per state, triphone-clustered
system is built. Each triphone is modelled by a 3-
state left-to-right HMM with diagonal covariance
matrices. The feature vectors contain 13 cepstral
coe�cients including the zeroth coe�cient aug-
mented with delta and delta±delta coe�cients.
These are the ®rst 13 coe�cients returned from a
MFCC analysis of order 24. The data is pre-em-
phasised by the ®lter H�z� � 1ÿ 0:97zÿ1.

The frame rate and frame size are 16 and 32 ms,
respectively as used as in the previous enhance-
ment experiments. These di�er from the standard
values for these parameters used by the RM
Toolkit. The non-standard frame rate a�ects the
modelling of short phones by increasing the min-
imum duration. This problem was alleviated by
the introduction of a skip state into each triphone
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model. The frame rate also a�ects the period of
time used to calculate the delta and delta±delta
coe�cients. This e�ect was not considered.

6.4. Baseline performance

Table 6 shows the word error rates for the clean
and noisy speech on the four test sets. The clean
baseline is worse than the published performance
on this database because of the decreased frame
rate as discussed. We see that the addition of noise
has a substantial e�ect on the error rate.

Also in this table are the word error rates
achievable when the training and testing condi-
tions are matched. The matched MFCC models
are obtained by adding Lynx noise to the training
set and then using this data to train models using
single pass retraining. These results give an indi-
cation of the best performance achievable by any
enhancement system.

6.5. Enhancement performance

We ®rst investigate the 18 dB noise condition.
Table 7 shows the word error rates for various
numbers of mixture components in the models. It
can be seen that a substantial improvement has

been made on the baseline performance. The per-
formance improves as the number of mixture
components increases, although the di�erence be-
tween the 512-mixture and 256-mixture systems is
not signi®cant.

The last row of this table shows the error rates
for the 512 mixture component system at 12 dB.
Again substantial improvements have been made
over the baseline performance.

From these two test conditions, it appears that
the improvement gained by the enhancement
technique halves the error rate. However this
performance is signi®cantly worse than the mat-
ched model results given in Table 6 suggesting that
there is a modelling de®ciency.

In Section 5.6 and Seymour (1996), we saw that
including temporal information improves the per-
formance of general speech models. Therefore we
implement and test a 32-state, 16 mixture com-
ponent per state model similar to Seymour (1996).

The results of this experiment for the two noise
conditions are shown in Table 8. The results at 18
dB are not signi®cantly di�erent from the 512
mixture component system. The 12 dB results are
signi®cantly worse than the 12 dB 512 mixture
component system.

Table 6

Baseline results for the RM database speaker independent test sets (``Feb89'', ``Oct89'', ``Feb91'' and ``Sep92'') for clean speech and

speech corrupted by Lynx noisea

Model SNR (dB) % Error

Feb89 Oct89 Feb91 Sep92 Average

Clean 1 6.3 7.3 5.9 11.0 7.6

18 38.9 30.4 35.8 43.1 37.0

12 80.4 81.0 77.7 85.2 81.1

Matched 18 16.7 14.8 14.1 21.0 16.7

12 40.8 31.3 34.0 40.4 36.6

a Performance using clean and matched models is shown.

Table 7

Enhancement results for the RM speaker independent test sets for Lynx noisea

SNR (dB) No. mixes % Error

Feb89 Oct89 Feb91 Sep92 Average

18 128 23.6 20.1 21.7 27.6 23.2

256 18.7 16.5 18.9 23.9 19.5

512 18.1 15.5 18.1 24.2 19.0

12 512 42.8 35.7 37.9 46.7 40.8

a The speech is enhanced using general speech models with varying numbers of mixture components.
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Thus we did not observe any improvement in
performance for a multi-state system. One reason
for the inferior results may be the di�erent training
procedures for the models since the 32� 16 system
was formed by continually splitting a AR-HMM
system whereas the 512 system was initialised from
single pass retraining on a MFCC system. It seems
that the superior distortion measure of the MFCC
system provides some advantage for initialisation.

Informal listening tests indicate that the en-
hanced speech contains some residual noise. This
is quite considerable and annoying for the speech
at 12 dB. Figs. 5±9 show spectrograms of the
clean, noisy and enhanced speech for the ®rst
sentence for speaker `alk0_3'. The enhancement is
performed using the 512-mixture system. The text
of this sentence is `WHEN WILL THE PER-

SONNEL CASUALTY REPORT FROM THE
YORKTOWN BE RESOLVED'. Residual noise
is evident in the enhanced spectrograms.

Seymour reported much less residual noise for
experiments with a non-adaptive enhancement
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Fig. 5. Clean speech spectrogram for the ®rst sentence for

speaker alk0_3.
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Fig. 6. Speech corrupted by Lynx noise at 12 dB; ®rst sentence

for speaker alk0_3.
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Fig. 7. Speech corrupted by Lynx noise at 12 dB enhanced

using Wiener ®lters formed from 512 mixture component

models; ®rst sentence for speaker alk0_3.
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Fig. 8. Speech corrupted by Lynx noise at 18 dB; ®rst sentence

for speaker alk0_3.
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Fig. 9. Speech corrupted by Lynx noise at 18 dB enhanced

using Wiener ®lters formed from 512 mixture component

models; ®rst sentence for speaker alk0_3.

Table 8

Enhancement results for the RM speaker independent test sets for Lynx noise at various SNRsa

SNR (dB) % Error

Feb89 Oct89 Feb91 Sep92 Average

18 18.0 16.4 18.0 24.5 19.2

12 46.0 38.9 42.3 48.5 43.9

a Speech enhanced using general speech models with 32-state, 16 mixture component/state models.
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system on this task at 18 dB (Seymour, 1996).
Since in this previous work, the estimators are
chosen according to MFCC probabilities, it seems
likely that the inferior modelling ability of AR-
HMMs is causing the increased distortion. Future
work should thus focus on improving the model-
ling ability of AR-HMMs. We have identi®ed
three main areas to be addressed. The ®rst is the
incorporation of delta features. This would hope-
fully allow a word- or phoneme-based enhance-
ment system to be built. The second area for
improvement is the incorporation of more vari-
ance information. As discussed in (Logan and
Robinson, 1997b), AR-HMMs currently have one
variance parameter per mixture component
whereas MFCC systems train a variance parame-
ter for each cepstral parameter.

The third main area to be addressed is that of
gain normalisation. We did not incorporate any
gain normalisation into our system since this is a
non-trivial problem for compensated AR-HMMs.
Ephraim has proposed a technique to iteratively
determine a gain contour in this case, but this
scheme is too computationally expensive for the
medium vocabulary system examined here
(Ephraim, 1992b).

7. Conclusions and future work

We have investigated the problem of enhancing
speech corrupted by additive noise in an unknown
environment when only one microphone is avail-
able. We have developed techniques based on a
non-adaptive enhancement system by Ephraim
(Ephraim, 1992a). This technique models speech
and noise statistics using AR-HMMs.

Working in the AR-HMM domain has three
advantages for enhancement of additive noise. The
®rst is that the feature vectors used are linearly
combinable. This is important when forming a
compensated system to model the corrupted
speech and also when forming ML estimates of
unknown parameters. The second advantage is
that the distortion measure used to compare fea-
tures to templates is the Itakura±Saito distortion
measure. This is more e�ective than a linear
spectral distortion measure which would be the

metric used if a linear spectral HMM system was
built. Finally, the HMM framework allows
MMSE spectral estimators as well as time domain
estimators to be formed. In our work, we found
the former to be better suited to the task of using
an enhancement system as a front-end to a clean
speech recogniser.

We extended the work in (Ephraim, 1992a) by
estimating the noise statistics directly from the
signal to be enhanced. Two main approaches were
developed. The ®rst considers estimating the noise
from detected pauses. The AR-HMM framework
is used for the pause detection. The second ap-
proach uses ML parameter estimation to estimate
the noise statistics given a compensated AR-HMM
model of the noisy speech.

Our enhancement schemes use perceptual fre-
quency AR-HMMs. Here we use the bilinear
transform to warp the frequency spectrum of our
models to an approximation of the Bark scale. We
have previously shown that this substantially im-
proves clean speech recognition performance
(Logan and Robinson, 1997b).

The schemes were evaluated using the NOI-
SEX-92 and RM databases providing information
about performance on small vocabulary speaker
dependent and medium vocabulary speaker inde-
pendent tasks, respectively. We evaluated the en-
hancement performance using distortion measures
and clean speech recognition results. Limited in-
formal listening tests were also conducted.

Both enhancement schemes were able to sub-
stantially improve on baseline results. On the small
vocabulary task, we found that the technique of
making ML estimates of the noise statistics was
signi®cantly better than the technique of estimat-
ing the noise statistics from pauses. The former
technique had performance which was comparable
to a matched system. We also found that while
speech enhanced using Wiener ®lters is perceptu-
ally more pleasing, if the system is to be used as a
front end to a clean speech recognition system,
then a MMSE PSD estimator is more appropriate.
Finally, we found that word-based models were
superior to general speech models, but that tem-
poral information could improve the latter.

The medium vocabulary experiments focused
on the ML adaptation technique. Due to model-
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ling de®ciencies in AR-HMMs, we were unable to
use a word- or phoneme-based enhancement sys-
tem. We therefore studied an enhancement system
based on general speech models. Although the
performance of this system was signi®cantly worse
than a matched system, substantial improvements
over baseline results were seen.

Future work should focus on improving the
modelling ability of AR-HMMs in three main ar-
eas: the incorporation of delta parameters; the
improvement of the distortion measure used and
appropriate gain normalisation. These appear to
be the main factors limiting the performance of
our system on more complex tasks.
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