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ABSTRACT

This paper presents an algorithm to segment speech ac-

cording to glottal open and closed phases using the time

waveform alone. Based on this, pitch, jitter and closed

to open glottal ratios can be computed. Segmentation is

achieved by identifying spectral changepoints at the sub-

pitch period timescale. Changepoints are identi�ed using

a 3-state autoregressive hidden Markov model (AR-HMM)

operating on the time waveform, with the Liljencrants-

Fant (LF) glottal model as a theoretical basis. Model pa-

rameters and optimal state sequence are determined re-

spectively using the expectation-maximisation (EM) algo-

rithm and a bounded state duration (BSD) Viterbi algo-

rithm. Experiments on synthetic speech give encourag-

ing glottal segmentation for modal, fry and breathy voice

types. Experiments on real speech obtained from TIMIT

give meaningful segmentations also.

1. Introduction

During speech, air 
ows from the lungs, through the

glottis and vocal tract, and is then radiated to the environ-

ment at the lips [1]. The speech production system can be

simpli�ed to three linear, decoupled subsystems in series:

glottal source, vocal tract and lip-radiation. In this paper,

these three subsystems are represented as an integrated

Liljencrants-Fant pulse generator, switched autoregressive

�lters and a di�erencer respectively.

This paper presents an algorithm to segment the speech

according to the glottal timing information using the

speech waveform alone. From this segmentation, pitch pe-

riod, pitch jitter and glottal open to closed ratios can be

computed. The segmentation is determined by identifying

spectral changepoints at the sub-pitch period level, which

occur for example at glottal closure and glottal opening.

These changepoints are identi�ed using a 3-state hidden

Markov model (HMM). The use of spectral changepoints

and the HMM for glottal segmentation are the novel as-

pects in this paper.

The accurate estimation of glottal timing information

has applications. Firstly, glottal information is character-

istic of a speaker and is useful to assist in speaker identi-
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Figure 1: LF waveform for one pitch period for modal

speech.

�cation or veri�cation. Secondly, abnormal timing infor-

mation is indicative of laryngeal disorders and is useful in

medical diagnosis. Thirdly, the identi�cation of open and

closed phases is useful for glottal-excited linear predictive

(GELP) coding, for studying source-tract interactions and

for speech recognition.

2. The Liljencrants-Fant (LF) Model

The Liljencrants-Fant (LF) model is a piecewise trigono-

metric and exponential model which represents the glottal

waveform [2]. It is illustrated in Figure 1 for modal speech

and is de�ned during a single pitch period as

g(t) =
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where !g = �=tp and T0 is the pitch period. The following

conditions for these equations hold:

R
T

0
g(t)dt= 0; �ta = 1�e��(tc�te); E0 =

�Ee

e�te sin(wgte)
; (2)

����������	�
��	��
�������������������
�	���	����������
�����
���������

��
�
����
�
�	

���� ���!�"��������

ISCA Archive
����#$$%%%&
��	"������&���$	���
'�



For convenience, these three piecewise segments are termed

open+, open- and closed phases respectively and have dis-

tinct spectra. Changepoints between these three phases

are evident as spectral changepoints in the glottal wave-

form. Because of the linear nature of the vocal tract and

lip-radiation subsystems, these spectral changepoints are

evident in the speech waveform also.

3. The Autoregressive Hidden
Markov Model (AR-HMM)

In the linear prediction approach to speech synthesis and

analysis, a single autoregressive model is used to represent

the glottal source, vocal tract and lip-radiation subsystems

combined. This has proven successful in speech coding

applications. A progression from this is to adopt three

autoregressive models, one for each glottal phase, and then

control the interaction between these three models via a

hidden Markov model. We therefore motivate the use of

a cyclical three-state autoregressive hidden Markov model

[3] for speech analysis represented in Figure 2. It is applied

to voiced, steady-state speech sounds.

The observed signal y1:T = [y1; y2; : : : ; yT ] is T samples

long. The state occupied at time t is rt. The probability of

being in state i at time t = 1 is r1(i). The initial conditions

for the speech waveform are y0 = y�p+1:0. The ith state

AR polynomial, excitation variance and order are termed

ai, �
2
e(i) and pi respectively. The autoregressive model for

state i is de�ned as ŷ
i

t =
P

p
i

j=1
ai(j)yt�j . The transition

probability from state i to state j is �i;j . The 3-state HMM

is de�ned fully in terms of the following parameters:

y0 = y�p+1:0 r1 = fr1(1); r1(2); r1(3)g

A = fa1; a2; a3g � = f�1;1; : : : ; �3;3g

� = f�2e(1); �
2
e(2); �

2
e(3)g

There are two problems: �rstly, the estimation of model

parameters given the observations, and secondly, the es-

timation of the optimal state sequence given the observa-

tions and parameter estimates, from which glottal timing

information is obtained. The expectation-maximisation al-

gorithm is applied to the �rst problem, and the bounded

state duration Viterbi algorithm to the second. For con-

venience, � = fy0; r1;�;A;�g.

4. The Expectation-Maximisation
(EM) Algorithm

The expectation-maximisation (EM) algorithm is a

general-purpose iterative algorithm to re-estimate model

parameters given observations, a model and initial param-

eter estimates, such that the likelihood of the observations

increases. The algorithm consists of two stages. In the �rst

stage, the forward-backward algorithm, otherwise known

as the Baum-Welch algorithm, is used. Standard compu-

tational procedures are employed [3] to compute the fol-

lowing variables:

Open+ Open-

Closed

(1) (2)

(3)

Figure 2: 3-state AR-HMM used for changepoint identi-

�cation.

�t(i) = p(y1:t; rt = ij�) (3)

�t(i) = p(yt+1:T jrt = i;�) (4)


t(i) = p(rt = ijy1:T ;�) (5)

�t(i; j) = p(rt = i; rt+1 = jjy1:T ;�) (6)

In the second stage, parameters are re-estimated.

Initial state
r1(i) = 
1(i)
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and y denotes the Moore-Penrose in-

verse such that Xy = (X0X)�1X0. Relevant Toeplitz ma-

trices and vectors are de�ned as follows

Ci =

2
6664

p

1(i) p


2(i)

. . . p

T (i)

3
7775

Y =

2
6664

y0 y�1 : : : y1�p

y1 y0 : : : y2�p

...
...

...
...

yT�1 yT�2 : : : yT�p

3
7775



vowel example modal breathy fry

word open+ open- closed open+ open- closed open+ open- closed

a Bob 54(0.5) 4(0.3) 42(0.7) 65(0.3) 3(0.5) 32(0.6) 56(0.9) 4(0.6) 40(0.9)

ae bat 54(0.2) 4(0.6) 42(0.6) 65(0.3) 3(0.5) 32(0.7) 56(1.1) 4(1.2) 40(1.8)

e bet 54(0.2) 4(0.8) 42(0.9) 65(1.7) 5(2.4) 30(3.1) 58(1.1) 3(0.3) 39(1.1)

er Bert 53(0.5) 4(0.3) 43(0.7) 61(6.3) 4(1.1) 35(5.8) 53(1.9) 3(0.7) 44(2.0)

i bit 54(0.3) 4(0.6) 42(0.7) 63(6.8) 4(2.0) 31(3.1) 56(0.7) 3(0.2) 41(0.8)

iy beet 54(0.6) 4(0.8) 42(0.6) 64(0.5) 4(0.5) 32(1.0) 57(0.7) 4(0.6) 40(1.1)

oo boot 53(0.5) 4(0.3) 43(0.6) 62(0.4) 4(0.6) 34(0.9) 58(2.6) 6(2.9) 36(2.8)

ow bought 53(0.2) 4(0.2) 42(0.3) 65(0.3) 4(1.1) 31(1.2) 52(0.7) 4(1.2) 44(1.0)

u book 54(1.0) 4(0.3) 42(0.9) 65(1.2) 4(1.3) 32(1.7) 55(1.2) 3(0.4) 42(1.2)

uh but 53(0.3) 4(0.4) 42(0.6) 65(0.3) 4(1.6) 31(1.7) 53(0.6) 3(0.4) 44(0.7)

mean value 54 4 42 64 4 32 55 4 41

true value 55 3 42 66 11 23 59 13 28

Table 1: State durations as percentages of a pitch period. Values are mean averages of the mean state duration across

100 realizations of a given synthetic vowel, with standard deviations in parentheses.
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5. The Bounded State Duration
(BSD) Viterbi Algorithm

To determine the optimal state sequence given model

parameters, a bounded state duration (BSD) Viterbi al-

gorithm similar to [4], rather than the standard Viterbi

algorithm is used. This places lower and upper bounds,

d1(i) and d2(i) respectively, on permissible state durations

for the ith state and is necessary to prevent short-duration

spurious state changes. The algorithm is based on the fol-

lowing recursions where bounds are speci�ed a priori,

�t(j; d) =�t�1(j; d� 1) + log bj(yt) d � 2 (7)

�t(j; 1) =
d2(i)
max
d1(i)

�
�t�1(i; d)+log pi(d)

�
+ log �i;j+ log bj(yt)

(8)

pi(d) = �
d�1
i;i

(1��i;i) is the probability of duration d in

state i, and bj(yt) is the jth state emission probability at

time t. The likelihood score ÆT at time T is

ÆT =
3

max
i=1

d2(i)
max
d=1

�
�T (i; d) + log pi(d)

�
(9)

For high signal-to-noise ratio (SNR) synthetic speech,

the standard Viterbi algorithm is satisfactory.

6. Experiments

Firstly, experiments are conducted on synthetic speech

and consist of synthesis, analysis and validation stages.

Synthesis involves the generation of speech of length 2000

samples and pitch period 200 samples (no vocal jitter).

Synthesis consists of an integrated-LF pulse generator pro-

ducing modal, breathy and fry voice (glottal subsystem),

a cascade of four 2nd order �lters simulating 10 di�er-

ent vowels (vocal tract subsystem), and a di�erencer (lip-

radiation subsystem), followed by white Gaussian noise ad-

dition (added at 80dB SNR for the purpose of preventing

degeneracy in the EM algorithm). Analysis involves the

use of the 3-state AR-HMM, 30 iterations of the EM algo-

rithm where initial conditions and state vectors are kept

�xed, and the BSD Viterbi algorithm to estimate the state

sequence. Validation involves comparing the mean esti-

mated state durations with their true values. Results are

recorded in Table 1.

Secondly, experiments are conducted on real speech

data. The central portions of long time-duration vowels

are extracted from the TIMIT database (male speakers,

dialect 1), and analysed as above. Reasonable state dura-

tions are given for all speakers as detailed in Table 2.
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Figure 3: Example segmentation of real speech using the (a) standard and (b) the BSD Viterbi algorithms.

For both synthetic and real speech, changepoints are

initialised at glottal closure instants estimated similarly to

[5], and at 10 and 30 % of a pitch period lagging these. Also

minimum durations are 30, 4 and 20 % of a pitch period

for the open+, open- and closed phases respectively. All

AR model orders are 16.

speaker number open+ open- closed

of vowels

mrcg0 90 49(14) 17(12) 37(12)

mrdd0 80 49(14) 13(9) 38(11)

mrso0 97 48(13) 21(11) 33(11)

mrws0 68 48(11) 15(11) 38(10)

mtjs0 78 48(11) 19(11) 36(11)

mtpf0 72 49(14) 14(11) 37(13)

mtrr0 93 45(11) 21(16) 44(14)

mwad0 58 50(14) 14(13) 39(11)

mwar0 85 47(12) 10(8) 43(12)

Table 2: State durations as percentages of a pitch period.

Values are mean averages of the mean state duration across

all long vowels for given TIMIT speakers.

7. Discussion

Experiments on synthetic speech show that segmenta-

tion depends on state sequence initialisation, a large open+

phase model order is required to capture the low frequency

resonance due to the glottis, segmentation deteriorates at

low SNRs due to the absence of an explicit observation

noise model, and the open- and closed changepoint is diÆ-

cult to accurately estimate because the glottal signal often

decays rapidly towards zero.

Figure 3 shows the segmentation of a vowel for the mtrr0

TIMIT speaker, and its segmentation using the standard

and BSD Viterbi algorithms. This shows the advantage of

the BSD algorithm at preventing spurious state changes.

An alternative is to introduce explicit state duration mod-

elling into the HMM [6], but at increased computational

cost.

An alternative to EM is Monte Carlo Markov chain

(MCMC), which has been applied to the glottal segmen-

tation problem with comparable results [7]. The use of in-

formative priors may give more robust segmentation. Pa-

rameters are estimated using posterior distributions.
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