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ABSTRACT
The client-server model is being advocated for speech
recognition over networks, where the acoustic features
are calculated by the client, compressed and transmitted
to the server. This has provoked a number of papers
claiming that as recognition accuracy and perceptual
quality are different goals, a new compression approach
is needed. This is verified by experiments in which
codecs such as CELP are shown to produce degraded
recognition performance, but that direct quantization of
acoustic features at data rates as low as 4kbps gives
little or no degradation. In this paper we show that the
goals are not incompatible, and that a very low bit-rate
codec can be used to perform the compression. We also
show that if the ability to reproduce the speech is really
not needed, a bit rate as low as 625 bit/sec can be
achieved by computing and compressing posterior
phone probabilities.

1. INTRODUCTION
It is one of the ironies of speech recognition technology
that the computing devices most able to run speech
recognition systems are the ones that least need it. Most
users are happy with a keyboard if they are seated at a
desk in front of a VDU. It is when they are on the move,
in a car, or their computer is too small to have a
keyboard, or when they have hands or eyes busy that
they need speech input. But the devices they are
accessing at such times would not usually have the
processor, RAM, or disk resources necessary to support
large vocabulary speech recognition. However, if the
device is connected to a network, the processing can
take place remotely, on a machine with all the necessary
resources. For this reason, the client-server approach to
speech recognition is becoming of increasing interest.

Networks carrying digital speech normally use a speech
compression scheme, and there have been a number of
studies showing how recognition performance degrades
when the speech has been compressed and
decompressed by a low-bit-rate scheme running at
below 16 kbit/sec [1][2]. Because recognition is about
transcription accuracy but coding is about perceptual

quality, recent work has proposed that new compression
schemes are needed which use recognition accuracy as
the optimisation criterion instead of perceptual quality.
To achieve this, they compute the acoustic features used
for recognition and encode them directly using standard
coding methods [3][4]. Whilst these schemes achieve
the required result at bit rates as low as 4kbits/sec, they
have the drawback of not being able to playback the
speech. As speech recognition is always prone to error,
the inability to check what was said can be a serious
drawback of the approach.

But is it really true that compression for listening and
compression for recognition are trying to achieve
different things? The most fundamental property of a
speech coder is that it should be intelligible, and
perceptual quality has intelligibility as its starting point.
For many years military communications have been
using very low bit-rate coders which are optimised
entirely for intelligibility. Intelligibility and recognition
accuracy are very close, if not identical, goals, and it
seems plausible that a codec optimised for intelligibility
would also be good for speech recognition.

The commonality goes further than that. Very-low bit-
rate speech coders are parametric. Like speech
recognisers, they use only basic parameters extracted
from the speech. These are:
� Spectral parameters, usually LPC (Linear

Predictive Coding) coefficients
� Pitch
� Voicing – either overall voicing, or in frequency

bands
In fact most of the bits are used to encode the spectral
parameters. Recent improvements in parametric speech
coders (e.g. [5]) have brought the intelligibility of such
coders to a par with higher bit-rate waveform coders
such as DoD CELP (Federal Standard 1016) [6]. This
shows that the basic speech parameters are being
extracted quite accurately.

In this paper we investigate how a state-of-the-art
parametric codec [7] can be used to both encode the
speech and allow the speech to be recognised with a
high degree of accuracy.



2. RECOGNITION FROM VERY LOW
BIT-RATE COMPRESSED SPEECH

2.1 Wideband Extension

One advantage of explicitly encoding the acoustic
features is that a wideband input signal can be used.
However, we have developed a straightforward way of
extending any speech codec up to 8kHz without
increasing the bit-rate by more than 500 bit/sec [8]. The
tests reported in [7] show that at 2.4 kbit/sec, better
intelligibility is achieved through extending the codec to
wideband than finer quantization of the narrowband
parameters. The extension to wideband is done by
splitting the band into two, encoding the lower 4kHz
using standard techniques, and the upper 4kHz using 2nd

order LPC.

2.2 LPC to Acoustic Features Transform

There is an important difference in the way the spectrum
is parameterised in speech coding compared to speech
recognition. For speech coding, LPCs are computed and
converted to LSPs (Line Spectral Pairs) for encoding.
For recognition, although acoustic features are
sometimes derived from the LPCs, they are usually
derived from a perceptually-warped (non-uniform)
version of the power spectrum. The most commonly
used features are MFCCs (Mel-Frequency Cepstral
Coefficients). A very important question is whether
acoustic features such as MFCCs can be successfully
derived via the LPCs used in the speech coder.

Although the transform could be done by decoding the
speech and computing the acoustic features on the
decoded waveform in the normal way, this would add
noise to and smooth the spectrum over time.  It is faster
and more accurate to transform the LPCs directly to a
power spectrum as follows:
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where )(na and g are the LPC coefficients and gain

respectively for a frame of speech and p is the LPC

model order. This in effect takes a Fourier transform of
the impulse response of the LPC (all-zero) prediction
filter, and then reciprocates the spectrum to derive the
power spectrum of the LPC (all-pole) vocal tract filter.
For a wideband codec with split bands, this needs to be
done for the lower and upper band and then the two
spectra joined together.

From this power spectrum the acoustic features can be
computed in the normal way. The MFCCs which we
have used for our tests are derived directly from the
power spectrum, but as most front-ends represent the

data as a power spectrum at some stage in the
processing the transform is generally applicable.

2.2.1 Testing the Transform
To test the viability of the LPC-MFCC transform, we
ran the coder without quantization, derived the MFCCs
from the LPCs, and then ran a recognition task using the
MFCCs as acoustic parameters.

The recogniser we have used in all our testing is the
Abbot Large Vocabulary recogniser [9], which is a
hybrid RNN-HMM system operating at a frame period
of 16ms. The recognition task used the Resource
Management (RM) database, and the baseline
performance with the particular training and testing sets
we used gave 5.7% error.

The results are shown in Table 1.

Train
Format

Test
Format

Frame
Size

Error
Rate

Direct
MFCC

Direct
MFCC

16ms 5.7%

Direct
MFCC

Unquantized
LPC-MFCC

16ms 13%

Unquantized
LPC-MFCC

Unquantized
LPC-MFCC

16ms 5.5%

Table 1: Comparison of direct MFCC and LPC-
MFCC front-ends

Clearly the LPC-derived MFCCs provide a different
parameterisation to the direct MFCCs as the error rate is
high when training and testing are not the same. But
when they are the same, the two formats give almost the
same performance. This suggests that no important
information is being lost by imposing an LPC model on
the spectrum. Indeed, the Perceptual Linear Prediction
method of acoustic analysis explicitly includes a LP step
with the aim of better modelling the speech spectrum.

2.3 Performance with Quantization

In investigating the recognition performance when the
LPCs are quantized, we have kept the bit-rate fixed at
2.4kbits/sec. This bit-rate is a good compromise
between bit-rate and intelligibility for the codec, so it
should be possible to get good recognition performance
without reverting to higher bit-rates. Given a fixed bit-
rate, we were able to adjust the frame-rate, having a
high frame-rate and coarse quantization or a lower
frame-rate and more accurate quantization. As the codec
uses interframe prediction of the LSP coefficients, the
higher frame-rates do not increase the quantization
noise proportionately.

The results of recognising from speech compressed at
2.4 kbit/sec are shown in Table 2.



Train
Format

Test Format Frame
Size

Error
Rate

Unquantized Unquantized 16ms 5.5%

Unquantized 2.4kbit/sec 16ms 7.1%

2.4kbit/sec 2.4kbit/sec 16ms 7.6%

Unquantized Unquantized 22.5ms 10.7%

Unquantized 2.4kbit/sec 22.5ms 11.2%

2.4kbit/sec 2.4kbit/sec 22.5ms 13.4%

Table 2: Performance at 2.4 kbit/sec

The larger frame-size (and therefore more accurate
spectrum) reduces the degradation due to quantization,
but at the expense of a very significant  increase in the
overall error rate. The frame-size of the spectral data
must be kept low – it would seem that the recogniser is
more sensitive than human listeners to the time-
smoothing of the spectrum. The slight increase in error
from 5.5% to 7.1% is about what we expected in view
of the level of quantization in the codec, and at the
higher bit-rates of 4kbit/sec or more proposed in [3] and
[4] we would expect the increase in error to be
insignificant.

The better performance when the recogniser is trained
on unquantized LPCs  may seem strange, as one would
expect best performance when training and testing are
matched. But the quantization process does not add
noise in any acoustic sense, rather it introduces a
random distortion to the spectrum. So for a limited
amount of training data, the undistorted spectrum
provides better models of the quantized spectrum than
the quantized spectrum itself could.

2.4 Other Speech Compression Schemes

Although we have investigated the use of a parametric
codec to encode the acoustic features, if higher quality
playback is required the same principles can be applied
to any waveform codec that uses LPC analysis.
However, in waveform codecs the LPC coefficients are
used only as predictors for the waveform coding, and
tend not to be as accurately coded as they would be for
a parametric codec (which depends completely on the
LPC parameters for reproducing the speech). For
instance, they are often calculated at quite a high frame
period – around 30ms.

Consequently, a waveform codec would require these
modifications to guarantee good recognition
performance:
� increase the frame-size of the LPC analysis and

coefficient encoding to match that of the recogniser
(10-16ms). Using inter-frame prediction prevents a
proportional rise in the bit rate.

� ensure adequate quantization of LSPs. Because this
is a smaller proportion of the overall bit rate in a
waveform codec, more bits could be allocated than
in the codec we have used.

� extend the codec to wideband using the generic
split-band scheme in [8].

� retrain recogniser on coded (but if possible
unquantized) speech.

3. COMPRESSION OF POSTERIOR
PROBABILITIES

In the case where the ability to play back the speech is
really not needed, we are interested to see if we can
significantly improve on the 4 kbit/sec reported in [3]
and [4]. Small computing devices (such as the current
range of WinCE-based handheld computers) tend to
have reasonably fast (c.100MHz) processors, and at
least a Megabyte or so of RAM. This power could be
used to do more processing than just the acoustic
features computation.

In a hybrid RNN-HMM system like Abbot, an
alternative to encoding the acoustic features is to
quantize the posterior phone probabilities. Computation
of these requires an extra 11 MIPS on top of the
acoustic feature computation, but very little RAM and
less than 500Kbytes of ROM. Because they are much
further on in the processing pipeline than the front-end
computations, computing these at the client allows the
server to concentrate solely on the memory-intensive
part of recognition (large vocabulary decoding),
enabling more users to be supported with a single
server.

However, even with the 255-level encoding of the log
probabilities used within Abbot, 22.5 kbit/sec are
needed to transmit the 45 probabilities. We have
investigated reducing this to 625 bit/sec using a 10-bit
vector quantizer. Initially we encoded the inter-frame
differences but gave up on this when we found we got
better performance encoding each frame directly.

The issue for the vector quantization process is the
distance measure. Using raw probabilities, the greatest
emphasis is given to the most probable phones. But the
lower probability phones are often the correct ones, and
these need to be encoded properly. Using log
probabilities instead would work well except it would
give the very small probability phones equal weight to
all the others, even though they are rarely correct.

To solve this, we transformed the probabilities before
computing distances using a log(1+αx) function, with α
varying from 10 to 1000. This gives all the benefits of
logs but prevents very small probabilities contributing
to the distance.



The test setup we used for these experiments was a very
demanding real-time large vocabulary task. The RNN
and the vector quantizer were both trained on the
WSJCAM0 read-speech database and the Language
Model was derived from WSJ data. However, we tested
on the SQALE test set, which gave a baseline word
error rate of  20.8%.

The results for the basic distance measures are shown in
Table 3 and for the log(1+αx) transformation in Table
4.

% error
Baseline 20.8
Linear VQ 25.4
Log VQ 26.7

Table 3: Effect of VQ coding of posterior
probabilities

α: % error
10 23.8
30 23.6
100 23.1
300 23.7
1000 24.0

Table 4: VQ using log(1+αx) transform

With the log(1+ αx) transformation the results are better
for all values of α. A value of α =100 gives the best
performance, with just 11% increase in error rate.

The 625 bit/sec target is a very aggressive one, and
depending on the application, we may well consider a
higher bit-rate to avoid any drop in performance at all.

4. SUMMARY
In this paper we have argued that although perceived
quality and recognition accuracy are different criteria
for a speech compression scheme, they are not
incompatible, and that the intelligibility criterion used
for optimising very low bit-rate codecs is very similar to
recognition accuracy. We have shown that the spectral
encoding in a parametric codec can be used to derive
acoustic features, with these provisos:
� A direct interface is created by transforming the

LPC coefficients to a power spectrum from which
the acoustic features can be derived

� the LPC analysis frame-rate is set to match that of
the recogniser

� the codec is extended to operate on wideband
speech

� the recogniser is retrained on coded, but if possible
unquantized, speech.

Encoding and deriving the acoustic features in this way
has the big advantage that the compressed signal can be
converted back into speech and used for error
correction.

If higher quality speech reproduction is needed, any
LPC-based codec (eg CELP) can be adapted to give
good recognition performance by incorporating these
features.

In applications where there really is no advantage in
being able to play back the speech, a very much lower
bit rate can be achieved by compressing phone posterior
probabilities instead of acoustic features. These can be
computed at the client using fairly modest computing
resources, allowing the server to concentrate on the
memory-intensive aspects of recognition. We have
investigated using a 1024 entry vector codebook to
quantize the 45 phone probabilities for each frame,
giving a data rate of just 625 bit/sec. We have tried a
number of different transformations before quantization,
the best being log(1+100x), which gives 23.1% error at
625 bit/sec against a baseline of 20.8%.

Further work will concentrate on verifying the
robustness of both approaches to adverse acoustic
conditions.
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